mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-04 04:07:54 +00:00
[OpenSearch] Add Self Query Retriever Support to OpenSearch (#11184)
### Description Add Self Query Retriever Support to OpenSearch ### Maintainers @rlancemartin, @eyurtsev, @navneet1v ### Twitter Handle @OpenSearchProj Signed-off-by: Naveen Tatikonda <navtat@amazon.com>
This commit is contained in:
parent
0da484be2c
commit
9b0029b9c2
@ -0,0 +1,439 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "13afcae7",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# OpenSearch\n",
|
||||||
|
"\n",
|
||||||
|
"> [OpenSearch](https://opensearch.org/) is a scalable, flexible, and extensible open-source software suite for search, analytics, and observability applications licensed under Apache 2.0. `OpenSearch` is a distributed search and analytics engine based on `Apache Lucene`.\n",
|
||||||
|
"\n",
|
||||||
|
"In this notebook, we'll demo the `SelfQueryRetriever` with an `OpenSearch` vector store."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "68e75fb9",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Creating an OpenSearch vector store\n",
|
||||||
|
"\n",
|
||||||
|
"First, we'll want to create an `OpenSearch` vector store and seed it with some data. We've created a small demo set of documents that contain summaries of movies.\n",
|
||||||
|
"\n",
|
||||||
|
"**Note:** The self-query retriever requires you to have `lark` installed (`pip install lark`). We also need the `opensearch-py` package."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"!pip install lark opensearch-py"
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": false,
|
||||||
|
"pycharm": {
|
||||||
|
"name": "#%%\n"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"id": "cb4a5787",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdin",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"OpenAI API Key: ········\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"from langchain.schema import Document\n",
|
||||||
|
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
|
||||||
|
"from langchain.vectorstores import OpenSearchVectorSearch\n",
|
||||||
|
"import os\n",
|
||||||
|
"import getpass\n",
|
||||||
|
"\n",
|
||||||
|
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")\n",
|
||||||
|
"\n",
|
||||||
|
"embeddings = OpenAIEmbeddings()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 8,
|
||||||
|
"id": "bcbe04d9",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"docs = [\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",\n",
|
||||||
|
" metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Leo DiCaprio gets lost in a dream within a dream within a dream within a ...\",\n",
|
||||||
|
" metadata={\"year\": 2010, \"director\": \"Christopher Nolan\", \"rating\": 8.2},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea\",\n",
|
||||||
|
" metadata={\"year\": 2006, \"director\": \"Satoshi Kon\", \"rating\": 8.6},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"A bunch of normal-sized women are supremely wholesome and some men pine after them\",\n",
|
||||||
|
" metadata={\"year\": 2019, \"director\": \"Greta Gerwig\", \"rating\": 8.3},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Toys come alive and have a blast doing so\",\n",
|
||||||
|
" metadata={\"year\": 1995, \"genre\": \"animated\"},\n",
|
||||||
|
" ),\n",
|
||||||
|
" Document(\n",
|
||||||
|
" page_content=\"Three men walk into the Zone, three men walk out of the Zone\",\n",
|
||||||
|
" metadata={\n",
|
||||||
|
" \"year\": 1979,\n",
|
||||||
|
" \"rating\": 9.9,\n",
|
||||||
|
" \"director\": \"Andrei Tarkovsky\",\n",
|
||||||
|
" \"genre\": \"science fiction\",\n",
|
||||||
|
" },\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"vectorstore = OpenSearchVectorSearch.from_documents(\n",
|
||||||
|
" docs, embeddings, index_name=\"opensearch-self-query-demo\", opensearch_url=\"http://localhost:9200\"\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "5ecaab6d",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Creating our self-querying retriever\n",
|
||||||
|
"Now we can instantiate our retriever. To do this we'll need to provide some information upfront about the metadata fields that our documents support and a short description of the document contents."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 9,
|
||||||
|
"id": "86e34dbf",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.llms import OpenAI\n",
|
||||||
|
"from langchain.retrievers.self_query.base import SelfQueryRetriever\n",
|
||||||
|
"from langchain.chains.query_constructor.base import AttributeInfo\n",
|
||||||
|
"\n",
|
||||||
|
"metadata_field_info = [\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"genre\",\n",
|
||||||
|
" description=\"The genre of the movie\",\n",
|
||||||
|
" type=\"string or list[string]\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"year\",\n",
|
||||||
|
" description=\"The year the movie was released\",\n",
|
||||||
|
" type=\"integer\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"director\",\n",
|
||||||
|
" description=\"The name of the movie director\",\n",
|
||||||
|
" type=\"string\",\n",
|
||||||
|
" ),\n",
|
||||||
|
" AttributeInfo(\n",
|
||||||
|
" name=\"rating\", description=\"A 1-10 rating for the movie\", type=\"float\"\n",
|
||||||
|
" ),\n",
|
||||||
|
"]\n",
|
||||||
|
"document_content_description = \"Brief summary of a movie\"\n",
|
||||||
|
"llm = OpenAI(temperature=0)\n",
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm, vectorstore, document_content_description, metadata_field_info, verbose=True\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "ea9df8d4",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Testing it out\n",
|
||||||
|
"And now we can try actually using our retriever!"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 10,
|
||||||
|
"id": "38a126e9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='dinosaur' filter=None limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||||
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'}),\n",
|
||||||
|
" Document(page_content='Leo DiCaprio gets lost in a dream within a dream within a dream within a ...', metadata={'year': 2010, 'director': 'Christopher Nolan', 'rating': 8.2}),\n",
|
||||||
|
" Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 10,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"What are some movies about dinosaurs\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 11,
|
||||||
|
"id": "60bf0074-e65e-4558-a4f2-8190f3e4e2f9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query=' ' filter=Comparison(comparator=<Comparator.GT: 'gt'>, attribute='rating', value=8.5) limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'}),\n",
|
||||||
|
" Document(page_content='A psychologist / detective gets lost in a series of dreams within dreams within dreams and Inception reused the idea', metadata={'year': 2006, 'director': 'Satoshi Kon', 'rating': 8.6})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 11,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"I want to watch a movie rated higher than 8.5\")\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 12,
|
||||||
|
"id": "b19d4da0",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='women' filter=Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='director', value='Greta Gerwig') limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='A bunch of normal-sized women are supremely wholesome and some men pine after them', metadata={'year': 2019, 'director': 'Greta Gerwig', 'rating': 8.3})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 12,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a query and a filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"Has Greta Gerwig directed any movies about women\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 13,
|
||||||
|
"id": "a59f946b-78a1-4d3e-9942-63834c7d7589",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query=' ' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='rating', value=8.5), Comparison(comparator=<Comparator.CONTAIN: 'contain'>, attribute='genre', value='science fiction')]) limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='Three men walk into the Zone, three men walk out of the Zone', metadata={'year': 1979, 'rating': 9.9, 'director': 'Andrei Tarkovsky', 'genre': 'science fiction'})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 13,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example specifies a composite filter\n",
|
||||||
|
"retriever.get_relevant_documents(\"What's a highly rated (above 8.5) science fiction film?\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "39bd1de1-b9fe-4a98-89da-58d8a7a6ae51",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Filter k\n",
|
||||||
|
"\n",
|
||||||
|
"We can also use the self query retriever to specify `k`: the number of documents to fetch.\n",
|
||||||
|
"\n",
|
||||||
|
"We can do this by passing `enable_limit=True` to the constructor."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"id": "bff36b88-b506-4877-9c63-e5a1a8d78e64",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"retriever = SelfQueryRetriever.from_llm(\n",
|
||||||
|
" llm,\n",
|
||||||
|
" vectorstore,\n",
|
||||||
|
" document_content_description,\n",
|
||||||
|
" metadata_field_info,\n",
|
||||||
|
" enable_limit=True,\n",
|
||||||
|
" verbose=True,\n",
|
||||||
|
")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"id": "2758d229-4f97-499c-819f-888acaf8ee10",
|
||||||
|
"metadata": {
|
||||||
|
"tags": []
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='dinosaur' filter=None limit=2\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='A bunch of scientists bring back dinosaurs and mayhem breaks loose', metadata={'year': 1993, 'rating': 7.7, 'genre': 'science fiction'}),\n",
|
||||||
|
" Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# This example only specifies a relevant query\n",
|
||||||
|
"retriever.get_relevant_documents(\"what are two movies about dinosaurs\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "61a10294",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Complex queries in Action!\n",
|
||||||
|
"We've tried out some simple queries, but what about more complex ones? Let's try out a few more complex queries that utilize the full power of OpenSearch."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"id": "e460da93",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"query='animated toys' filter=Operation(operator=<Operator.AND: 'and'>, arguments=[Operation(operator=<Operator.OR: 'or'>, arguments=[Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='animated'), Comparison(comparator=<Comparator.EQ: 'eq'>, attribute='genre', value='comedy')]), Comparison(comparator=<Comparator.GTE: 'gte'>, attribute='year', value=1990)]) limit=None\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"[Document(page_content='Toys come alive and have a blast doing so', metadata={'year': 1995, 'genre': 'animated'})]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 16,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"retriever.get_relevant_documents(\"what animated or comedy movies have been released in the last 30 years about animated toys?\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"id": "0851fc42",
|
||||||
|
"metadata": {
|
||||||
|
"pycharm": {
|
||||||
|
"name": "#%%\n"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"{'acknowledged': True}"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"vectorstore.client.indices.delete(index=\"opensearch-self-query-demo\")\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.18"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -14,6 +14,7 @@ from langchain.retrievers.self_query.deeplake import DeepLakeTranslator
|
|||||||
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
|
from langchain.retrievers.self_query.elasticsearch import ElasticsearchTranslator
|
||||||
from langchain.retrievers.self_query.milvus import MilvusTranslator
|
from langchain.retrievers.self_query.milvus import MilvusTranslator
|
||||||
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
from langchain.retrievers.self_query.myscale import MyScaleTranslator
|
||||||
|
from langchain.retrievers.self_query.opensearch import OpenSearchTranslator
|
||||||
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
from langchain.retrievers.self_query.pinecone import PineconeTranslator
|
||||||
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
from langchain.retrievers.self_query.qdrant import QdrantTranslator
|
||||||
from langchain.retrievers.self_query.redis import RedisTranslator
|
from langchain.retrievers.self_query.redis import RedisTranslator
|
||||||
@ -30,6 +31,7 @@ from langchain.vectorstores import (
|
|||||||
ElasticsearchStore,
|
ElasticsearchStore,
|
||||||
Milvus,
|
Milvus,
|
||||||
MyScale,
|
MyScale,
|
||||||
|
OpenSearchVectorSearch,
|
||||||
Pinecone,
|
Pinecone,
|
||||||
Qdrant,
|
Qdrant,
|
||||||
Redis,
|
Redis,
|
||||||
@ -56,6 +58,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
|
|||||||
Milvus: MilvusTranslator,
|
Milvus: MilvusTranslator,
|
||||||
SupabaseVectorStore: SupabaseVectorTranslator,
|
SupabaseVectorStore: SupabaseVectorTranslator,
|
||||||
TimescaleVector: TimescaleVectorTranslator,
|
TimescaleVector: TimescaleVectorTranslator,
|
||||||
|
OpenSearchVectorSearch: OpenSearchTranslator,
|
||||||
}
|
}
|
||||||
if isinstance(vectorstore, Qdrant):
|
if isinstance(vectorstore, Qdrant):
|
||||||
return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key)
|
return QdrantTranslator(metadata_key=vectorstore.metadata_payload_key)
|
||||||
|
84
libs/langchain/langchain/retrievers/self_query/opensearch.py
Normal file
84
libs/langchain/langchain/retrievers/self_query/opensearch.py
Normal file
@ -0,0 +1,84 @@
|
|||||||
|
from typing import Dict, Tuple, Union
|
||||||
|
|
||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
StructuredQuery,
|
||||||
|
Visitor,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class OpenSearchTranslator(Visitor):
|
||||||
|
"""Translate `OpenSearch` internal query domain-specific
|
||||||
|
language elements to valid filters."""
|
||||||
|
|
||||||
|
allowed_comparators = [
|
||||||
|
Comparator.EQ,
|
||||||
|
Comparator.LT,
|
||||||
|
Comparator.LTE,
|
||||||
|
Comparator.GT,
|
||||||
|
Comparator.GTE,
|
||||||
|
Comparator.CONTAIN,
|
||||||
|
Comparator.LIKE,
|
||||||
|
]
|
||||||
|
"""Subset of allowed logical comparators."""
|
||||||
|
|
||||||
|
allowed_operators = [Operator.AND, Operator.OR, Operator.NOT]
|
||||||
|
"""Subset of allowed logical operators."""
|
||||||
|
|
||||||
|
def _format_func(self, func: Union[Operator, Comparator]) -> str:
|
||||||
|
self._validate_func(func)
|
||||||
|
comp_operator_map = {
|
||||||
|
Comparator.EQ: "term",
|
||||||
|
Comparator.LT: "lt",
|
||||||
|
Comparator.LTE: "lte",
|
||||||
|
Comparator.GT: "gt",
|
||||||
|
Comparator.GTE: "gte",
|
||||||
|
Comparator.CONTAIN: "match",
|
||||||
|
Comparator.LIKE: "fuzzy",
|
||||||
|
Operator.AND: "must",
|
||||||
|
Operator.OR: "should",
|
||||||
|
Operator.NOT: "must_not",
|
||||||
|
}
|
||||||
|
return comp_operator_map[func]
|
||||||
|
|
||||||
|
def visit_operation(self, operation: Operation) -> Dict:
|
||||||
|
args = [arg.accept(self) for arg in operation.arguments]
|
||||||
|
|
||||||
|
return {"bool": {self._format_func(operation.operator): args}}
|
||||||
|
|
||||||
|
def visit_comparison(self, comparison: Comparison) -> Dict:
|
||||||
|
field = f"metadata.{comparison.attribute}"
|
||||||
|
|
||||||
|
if comparison.comparator in [
|
||||||
|
Comparator.LT,
|
||||||
|
Comparator.LTE,
|
||||||
|
Comparator.GT,
|
||||||
|
Comparator.GTE,
|
||||||
|
]:
|
||||||
|
return {
|
||||||
|
"range": {
|
||||||
|
field: {self._format_func(comparison.comparator): comparison.value}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if comparison.comparator == Comparator.LIKE:
|
||||||
|
return {
|
||||||
|
self._format_func(comparison.comparator): {
|
||||||
|
field: {"value": comparison.value}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
field = f"{field}.keyword" if isinstance(comparison.value, str) else field
|
||||||
|
|
||||||
|
return {self._format_func(comparison.comparator): {field: comparison.value}}
|
||||||
|
|
||||||
|
def visit_structured_query(
|
||||||
|
self, structured_query: StructuredQuery
|
||||||
|
) -> Tuple[str, dict]:
|
||||||
|
if structured_query.filter is None:
|
||||||
|
kwargs = {}
|
||||||
|
else:
|
||||||
|
kwargs = {"filter": structured_query.filter.accept(self)}
|
||||||
|
return structured_query.query, kwargs
|
@ -341,6 +341,7 @@ class OpenSearchVectorSearch(VectorStore):
|
|||||||
http_auth = _get_kwargs_value(kwargs, "http_auth", None)
|
http_auth = _get_kwargs_value(kwargs, "http_auth", None)
|
||||||
self.is_aoss = _is_aoss_enabled(http_auth=http_auth)
|
self.is_aoss = _is_aoss_enabled(http_auth=http_auth)
|
||||||
self.client = _get_opensearch_client(opensearch_url, **kwargs)
|
self.client = _get_opensearch_client(opensearch_url, **kwargs)
|
||||||
|
self.engine = _get_kwargs_value(kwargs, "engine", None)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def embeddings(self) -> Embeddings:
|
def embeddings(self) -> Embeddings:
|
||||||
@ -528,6 +529,7 @@ class OpenSearchVectorSearch(VectorStore):
|
|||||||
search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search")
|
search_type = _get_kwargs_value(kwargs, "search_type", "approximate_search")
|
||||||
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
|
vector_field = _get_kwargs_value(kwargs, "vector_field", "vector_field")
|
||||||
index_name = _get_kwargs_value(kwargs, "index_name", self.index_name)
|
index_name = _get_kwargs_value(kwargs, "index_name", self.index_name)
|
||||||
|
filter = _get_kwargs_value(kwargs, "filter", {})
|
||||||
|
|
||||||
if (
|
if (
|
||||||
self.is_aoss
|
self.is_aoss
|
||||||
@ -564,6 +566,17 @@ class OpenSearchVectorSearch(VectorStore):
|
|||||||
"is invalid. `lucene_filter` is deprecated"
|
"is invalid. `lucene_filter` is deprecated"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if (
|
||||||
|
efficient_filter == {}
|
||||||
|
and boolean_filter == {}
|
||||||
|
and lucene_filter == {}
|
||||||
|
and filter != {}
|
||||||
|
):
|
||||||
|
if self.engine in ["faiss", "lucene"]:
|
||||||
|
efficient_filter = filter
|
||||||
|
else:
|
||||||
|
boolean_filter = filter
|
||||||
|
|
||||||
if boolean_filter != {}:
|
if boolean_filter != {}:
|
||||||
search_query = _approximate_search_query_with_boolean_filter(
|
search_query = _approximate_search_query_with_boolean_filter(
|
||||||
embedding,
|
embedding,
|
||||||
@ -745,6 +758,7 @@ class OpenSearchVectorSearch(VectorStore):
|
|||||||
max_chunk_bytes = _get_kwargs_value(kwargs, "max_chunk_bytes", 1 * 1024 * 1024)
|
max_chunk_bytes = _get_kwargs_value(kwargs, "max_chunk_bytes", 1 * 1024 * 1024)
|
||||||
http_auth = _get_kwargs_value(kwargs, "http_auth", None)
|
http_auth = _get_kwargs_value(kwargs, "http_auth", None)
|
||||||
is_aoss = _is_aoss_enabled(http_auth=http_auth)
|
is_aoss = _is_aoss_enabled(http_auth=http_auth)
|
||||||
|
engine = None
|
||||||
|
|
||||||
if is_aoss and not is_appx_search:
|
if is_aoss and not is_appx_search:
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -782,4 +796,5 @@ class OpenSearchVectorSearch(VectorStore):
|
|||||||
max_chunk_bytes=max_chunk_bytes,
|
max_chunk_bytes=max_chunk_bytes,
|
||||||
is_aoss=is_aoss,
|
is_aoss=is_aoss,
|
||||||
)
|
)
|
||||||
|
kwargs["engine"] = engine
|
||||||
return cls(opensearch_url, index_name, embedding, **kwargs)
|
return cls(opensearch_url, index_name, embedding, **kwargs)
|
||||||
|
@ -0,0 +1,87 @@
|
|||||||
|
from langchain.chains.query_constructor.ir import (
|
||||||
|
Comparator,
|
||||||
|
Comparison,
|
||||||
|
Operation,
|
||||||
|
Operator,
|
||||||
|
StructuredQuery,
|
||||||
|
)
|
||||||
|
from langchain.retrievers.self_query.opensearch import OpenSearchTranslator
|
||||||
|
|
||||||
|
DEFAULT_TRANSLATOR = OpenSearchTranslator()
|
||||||
|
|
||||||
|
|
||||||
|
def test_visit_comparison() -> None:
|
||||||
|
comp = Comparison(comparator=Comparator.EQ, attribute="foo", value="10")
|
||||||
|
expected = {"term": {"metadata.foo.keyword": "10"}}
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_comparison(comp)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
|
||||||
|
def test_visit_operation() -> None:
|
||||||
|
op = Operation(
|
||||||
|
operator=Operator.AND,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.GTE, attribute="bar", value=5),
|
||||||
|
Comparison(comparator=Comparator.LT, attribute="bar", value=10),
|
||||||
|
Comparison(comparator=Comparator.EQ, attribute="baz", value="abcd"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
expected = {
|
||||||
|
"bool": {
|
||||||
|
"must": [
|
||||||
|
{"range": {"metadata.bar": {"gte": 5}}},
|
||||||
|
{"range": {"metadata.bar": {"lt": 10}}},
|
||||||
|
{"term": {"metadata.baz.keyword": "abcd"}},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_operation(op)
|
||||||
|
assert expected == actual
|
||||||
|
|
||||||
|
|
||||||
|
def test_visit_structured_query() -> None:
|
||||||
|
query = "What is the capital of France?"
|
||||||
|
operation = Operation(
|
||||||
|
operator=Operator.AND,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.EQ, attribute="foo", value="20"),
|
||||||
|
Operation(
|
||||||
|
operator=Operator.OR,
|
||||||
|
arguments=[
|
||||||
|
Comparison(comparator=Comparator.LTE, attribute="bar", value=7),
|
||||||
|
Comparison(
|
||||||
|
comparator=Comparator.LIKE, attribute="baz", value="abc"
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
structured_query = StructuredQuery(query=query, filter=operation, limit=None)
|
||||||
|
expected = (
|
||||||
|
query,
|
||||||
|
{
|
||||||
|
"filter": {
|
||||||
|
"bool": {
|
||||||
|
"must": [
|
||||||
|
{"term": {"metadata.foo.keyword": "20"}},
|
||||||
|
{
|
||||||
|
"bool": {
|
||||||
|
"should": [
|
||||||
|
{"range": {"metadata.bar": {"lte": 7}}},
|
||||||
|
{
|
||||||
|
"fuzzy": {
|
||||||
|
"metadata.baz": {
|
||||||
|
"value": "abc",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
)
|
||||||
|
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
|
||||||
|
assert expected == actual
|
Loading…
Reference in New Issue
Block a user