mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 22:42:05 +00:00
community[patch]: LanceDB integration patch update (#20686)
Description : - added functionalities - delete, index creation, using existing connection object etc. - updated usage - Added LaceDB cloud OSS support make lint_diff , make test checks done
This commit is contained in:
@@ -1,6 +1,8 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
import uuid
|
||||
import warnings
|
||||
from typing import Any, Iterable, List, Optional
|
||||
|
||||
from langchain_core.documents import Document
|
||||
@@ -8,6 +10,17 @@ from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.vectorstores import VectorStore
|
||||
|
||||
|
||||
def import_lancedb() -> Any:
|
||||
try:
|
||||
import lancedb
|
||||
except ImportError as e:
|
||||
raise ImportError(
|
||||
"Could not import pinecone lancedb package. "
|
||||
"Please install it with `pip install lancedb`."
|
||||
) from e
|
||||
return lancedb
|
||||
|
||||
|
||||
class LanceDB(VectorStore):
|
||||
"""`LanceDB` vector store.
|
||||
|
||||
@@ -22,15 +35,15 @@ class LanceDB(VectorStore):
|
||||
id_key: Key to use for the id in the database. Defaults to ``id``.
|
||||
text_key: Key to use for the text in the database. Defaults to ``text``.
|
||||
table_name: Name of the table to use. Defaults to ``vectorstore``.
|
||||
api_key: API key to use for LanceDB cloud database.
|
||||
region: Region to use for LanceDB cloud database.
|
||||
mode: Mode to use for adding data to the table. Defaults to ``overwrite``.
|
||||
|
||||
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
db = lancedb.connect('./lancedb')
|
||||
table = db.open_table('my_table')
|
||||
vectorstore = LanceDB(table, embedding_function)
|
||||
vectorstore = LanceDB(uri='/lancedb', embedding_function)
|
||||
vectorstore.add_texts(['text1', 'text2'])
|
||||
result = vectorstore.similarity_search('text1')
|
||||
"""
|
||||
@@ -39,38 +52,55 @@ class LanceDB(VectorStore):
|
||||
self,
|
||||
connection: Optional[Any] = None,
|
||||
embedding: Optional[Embeddings] = None,
|
||||
uri: Optional[str] = "/tmp/lancedb",
|
||||
vector_key: Optional[str] = "vector",
|
||||
id_key: Optional[str] = "id",
|
||||
text_key: Optional[str] = "text",
|
||||
table_name: Optional[str] = "vectorstore",
|
||||
api_key: Optional[str] = None,
|
||||
region: Optional[str] = None,
|
||||
mode: Optional[str] = "overwrite",
|
||||
):
|
||||
"""Initialize with Lance DB vectorstore"""
|
||||
try:
|
||||
import lancedb
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import lancedb python package. "
|
||||
"Please install it with `pip install lancedb`."
|
||||
)
|
||||
self.lancedb = lancedb
|
||||
lancedb = import_lancedb()
|
||||
self._embedding = embedding
|
||||
self._vector_key = vector_key
|
||||
self._id_key = id_key
|
||||
self._text_key = text_key
|
||||
self._table_name = table_name
|
||||
self.api_key = api_key or os.getenv("LANCE_API_KEY") if api_key != "" else None
|
||||
self.region = region
|
||||
self.mode = mode
|
||||
|
||||
if isinstance(uri, str) and self.api_key is None:
|
||||
if uri.startswith("db://"):
|
||||
raise ValueError("API key is required for LanceDB cloud.")
|
||||
|
||||
if self._embedding is None:
|
||||
raise ValueError("embedding should be provided")
|
||||
raise ValueError("embedding object should be provided")
|
||||
|
||||
if connection is not None:
|
||||
if not isinstance(connection, lancedb.db.LanceTable):
|
||||
raise ValueError(
|
||||
"connection should be an instance of lancedb.db.LanceTable, ",
|
||||
f"got {type(connection)}",
|
||||
)
|
||||
if isinstance(connection, lancedb.db.LanceDBConnection):
|
||||
self._connection = connection
|
||||
elif isinstance(connection, (str, lancedb.db.LanceTable)):
|
||||
raise ValueError(
|
||||
"`connection` has to be a lancedb.db.LanceDBConnection object.\
|
||||
`lancedb.db.LanceTable` is deprecated."
|
||||
)
|
||||
else:
|
||||
self._connection = self._init_table()
|
||||
if self.api_key is None:
|
||||
self._connection = lancedb.connect(uri)
|
||||
else:
|
||||
if isinstance(uri, str):
|
||||
if uri.startswith("db://"):
|
||||
self._connection = lancedb.connect(
|
||||
uri, api_key=self.api_key, region=self.region
|
||||
)
|
||||
else:
|
||||
self._connection = lancedb.connect(uri)
|
||||
warnings.warn(
|
||||
"api key provided with local uri.\
|
||||
The data will be stored locally"
|
||||
)
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
@@ -88,7 +118,7 @@ class LanceDB(VectorStore):
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of ids to associate with the texts.
|
||||
ids: Optional list of ids to associate w ith the texts.
|
||||
|
||||
Returns:
|
||||
List of ids of the added texts.
|
||||
@@ -99,20 +129,70 @@ class LanceDB(VectorStore):
|
||||
embeddings = self._embedding.embed_documents(list(texts)) # type: ignore
|
||||
for idx, text in enumerate(texts):
|
||||
embedding = embeddings[idx]
|
||||
metadata = metadatas[idx] if metadatas else {}
|
||||
metadata = metadatas[idx] if metadatas else {"id": ids[idx]}
|
||||
docs.append(
|
||||
{
|
||||
self._vector_key: embedding,
|
||||
self._id_key: ids[idx],
|
||||
self._text_key: text,
|
||||
**metadata,
|
||||
"metadata": metadata,
|
||||
}
|
||||
)
|
||||
self._connection.add(docs)
|
||||
|
||||
if self._table_name in self._connection.table_names():
|
||||
tbl = self._connection.open_table(self._table_name)
|
||||
if self.api_key is None:
|
||||
tbl.add(docs, mode=self.mode)
|
||||
else:
|
||||
tbl.add(docs)
|
||||
else:
|
||||
self._connection.create_table(self._table_name, data=docs)
|
||||
return ids
|
||||
|
||||
def get_table(self, name: Optional[str] = None) -> Any:
|
||||
if name is not None:
|
||||
try:
|
||||
self._connection.open_table(name)
|
||||
except Exception:
|
||||
raise ValueError(f"Table {name} not found in the database")
|
||||
else:
|
||||
return self._connection.open_table(self._table_name)
|
||||
|
||||
def create_index(
|
||||
self,
|
||||
col_name: Optional[str] = None,
|
||||
vector_col: Optional[str] = None,
|
||||
num_partitions: Optional[int] = 256,
|
||||
num_sub_vectors: Optional[int] = 96,
|
||||
index_cache_size: Optional[int] = None,
|
||||
) -> None:
|
||||
"""
|
||||
Create a scalar(for non-vector cols) or a vector index on a table.
|
||||
Make sure your vector column has enough data before creating an index on it.
|
||||
|
||||
Args:
|
||||
vector_col: Provide if you want to create index on a vector column.
|
||||
col_name: Provide if you want to create index on a non-vector column.
|
||||
metric: Provide the metric to use for vector index. Defaults to 'L2'
|
||||
choice of metrics: 'L2', 'dot', 'cosine'
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if vector_col:
|
||||
self._connection.create_index(
|
||||
vector_column_name=vector_col,
|
||||
num_partitions=num_partitions,
|
||||
num_sub_vectors=num_sub_vectors,
|
||||
index_cache_size=index_cache_size,
|
||||
)
|
||||
elif col_name:
|
||||
self._connection.create_scalar_index(col_name)
|
||||
else:
|
||||
raise ValueError("Provide either vector_col or col_name")
|
||||
|
||||
def similarity_search(
|
||||
self, query: str, k: int = 4, **kwargs: Any
|
||||
self, query: str, k: int = 4, name: Optional[str] = None, **kwargs: Any
|
||||
) -> List[Document]:
|
||||
"""Return documents most similar to the query
|
||||
|
||||
@@ -124,8 +204,9 @@ class LanceDB(VectorStore):
|
||||
List of documents most similar to the query.
|
||||
"""
|
||||
embedding = self._embedding.embed_query(query) # type: ignore
|
||||
tbl = self.get_table(name)
|
||||
docs = (
|
||||
self._connection.search(embedding, vector_column_name=self._vector_key)
|
||||
tbl.search(embedding, vector_column_name=self._vector_key)
|
||||
.limit(k)
|
||||
.to_arrow()
|
||||
)
|
||||
@@ -155,32 +236,47 @@ class LanceDB(VectorStore):
|
||||
**kwargs: Any,
|
||||
) -> LanceDB:
|
||||
instance = LanceDB(
|
||||
connection,
|
||||
embedding,
|
||||
vector_key,
|
||||
id_key,
|
||||
text_key,
|
||||
connection=connection,
|
||||
embedding=embedding,
|
||||
vector_key=vector_key,
|
||||
id_key=id_key,
|
||||
text_key=text_key,
|
||||
)
|
||||
instance.add_texts(texts, metadatas=metadatas, **kwargs)
|
||||
|
||||
return instance
|
||||
|
||||
def _init_table(self) -> Any:
|
||||
import pyarrow as pa
|
||||
def delete(
|
||||
self,
|
||||
ids: Optional[List[str]] = None,
|
||||
delete_all: Optional[bool] = None,
|
||||
filter: Optional[str] = None,
|
||||
drop_columns: Optional[List[str]] = None,
|
||||
name: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
"""
|
||||
Allows deleting rows by filtering, by ids or drop columns from the table.
|
||||
|
||||
schema = pa.schema(
|
||||
[
|
||||
pa.field(
|
||||
self._vector_key,
|
||||
pa.list_(
|
||||
pa.float32(),
|
||||
len(self.embeddings.embed_query("test")), # type: ignore
|
||||
),
|
||||
),
|
||||
pa.field(self._id_key, pa.string()),
|
||||
pa.field(self._text_key, pa.string()),
|
||||
]
|
||||
)
|
||||
db = self.lancedb.connect("/tmp/lancedb")
|
||||
tbl = db.create_table(self._table_name, schema=schema, mode="overwrite")
|
||||
return tbl
|
||||
Args:
|
||||
filter: Provide a string SQL expression - "{col} {operation} {value}".
|
||||
ids: Provide list of ids to delete from the table.
|
||||
drop_columns: Provide list of columns to drop from the table.
|
||||
delete_all: If True, delete all rows from the table.
|
||||
"""
|
||||
tbl = self.get_table(name)
|
||||
if filter:
|
||||
tbl.delete(filter)
|
||||
elif ids:
|
||||
tbl.delete("id in ('{}')".format(",".join(ids)))
|
||||
elif drop_columns:
|
||||
if self.api_key is not None:
|
||||
raise NotImplementedError(
|
||||
"Column operations currently not supported in LanceDB Cloud."
|
||||
)
|
||||
else:
|
||||
tbl.drop_columns(drop_columns)
|
||||
elif delete_all:
|
||||
tbl.delete("true")
|
||||
else:
|
||||
raise ValueError("Provide either filter, ids, drop_columns or delete_all")
|
||||
|
Reference in New Issue
Block a user