Update some Tools Docs (#3913)

Haven't gotten to all of them, but this:
- Updates some of the tools notebooks to actually instantiate a tool
(many just show a 'utility' rather than a tool. More changes to come in
separate PR)
- Move the `Tool` and decorator definitions to `langchain/tools/base.py`
(but still export from `langchain.agents`)
- Add scene explain to the load_tools() function
- Add unit tests for public apis for the langchain.tools and langchain.agents modules
This commit is contained in:
Zander Chase
2023-05-01 19:07:26 -07:00
committed by GitHub
parent 84ea17b786
commit 9b9b231e10
14 changed files with 758 additions and 370 deletions

View File

@@ -1,6 +1,6 @@
"""Core toolkit implementations."""
from langchain.tools.base import BaseTool, StructuredTool
from langchain.tools.base import BaseTool, StructuredTool, Tool, tool
from langchain.tools.bing_search.tool import BingSearchResults, BingSearchRun
from langchain.tools.ddg_search.tool import DuckDuckGoSearchResults, DuckDuckGoSearchRun
from langchain.tools.file_management.copy import CopyFileTool
@@ -41,6 +41,7 @@ __all__ = [
"APIOperation",
"BaseTool",
"BaseTool",
"BaseTool",
"BingSearchResults",
"BingSearchRun",
"ClickTool",
@@ -49,7 +50,6 @@ __all__ = [
"DeleteFileTool",
"DuckDuckGoSearchResults",
"DuckDuckGoSearchRun",
"DuckDuckGoSearchRun",
"ExtractHyperlinksTool",
"ExtractTextTool",
"FileSearchTool",
@@ -65,15 +65,16 @@ __all__ = [
"NavigateTool",
"OpenAPISpec",
"ReadFileTool",
"SceneXplainTool",
"ShellTool",
"StructuredTool",
"WriteFileTool",
"BaseTool",
"SceneXplainTool",
"VectorStoreQAWithSourcesTool",
"Tool",
"VectorStoreQATool",
"VectorStoreQAWithSourcesTool",
"WikipediaQueryRun",
"WolframAlphaQueryRun",
"ZapierNLARunAction",
"WriteFileTool",
"ZapierNLAListActions",
"ZapierNLARunAction",
"tool",
]

View File

@@ -3,6 +3,7 @@ from __future__ import annotations
import warnings
from abc import ABC, abstractmethod
from functools import partial
from inspect import signature
from typing import Any, Awaitable, Callable, Dict, Optional, Tuple, Type, Union
@@ -13,6 +14,7 @@ from pydantic import (
create_model,
root_validator,
validate_arguments,
validator,
)
from pydantic.main import ModelMetaclass
@@ -298,6 +300,113 @@ class BaseTool(ABC, BaseModel, metaclass=ToolMetaclass):
return self.run(tool_input, callbacks=callbacks)
class Tool(BaseTool):
"""Tool that takes in function or coroutine directly."""
description: str = ""
func: Callable[..., str]
"""The function to run when the tool is called."""
coroutine: Optional[Callable[..., Awaitable[str]]] = None
"""The asynchronous version of the function."""
@validator("func", pre=True, always=True)
def validate_func_not_partial(cls, func: Callable) -> Callable:
"""Check that the function is not a partial."""
if isinstance(func, partial):
raise ValueError("Partial functions not yet supported in tools.")
return func
@property
def args(self) -> dict:
"""The tool's input arguments."""
if self.args_schema is not None:
return self.args_schema.schema()["properties"]
# For backwards compatibility, if the function signature is ambiguous,
# assume it takes a single string input.
return {"tool_input": {"type": "string"}}
def _to_args_and_kwargs(self, tool_input: Union[str, Dict]) -> Tuple[Tuple, Dict]:
"""Convert tool input to pydantic model."""
args, kwargs = super()._to_args_and_kwargs(tool_input)
# For backwards compatibility. The tool must be run with a single input
all_args = list(args) + list(kwargs.values())
if len(all_args) != 1:
raise ValueError(
f"Too many arguments to single-input tool {self.name}."
f" Args: {all_args}"
)
return tuple(all_args), {}
def _run(
self,
*args: Any,
run_manager: Optional[CallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool."""
new_argument_supported = signature(self.func).parameters.get("callbacks")
return (
self.func(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else self.func(*args, **kwargs)
)
async def _arun(
self,
*args: Any,
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
**kwargs: Any,
) -> Any:
"""Use the tool asynchronously."""
if self.coroutine:
new_argument_supported = signature(self.coroutine).parameters.get(
"callbacks"
)
return (
await self.coroutine(
*args,
callbacks=run_manager.get_child() if run_manager else None,
**kwargs,
)
if new_argument_supported
else await self.coroutine(*args, **kwargs)
)
raise NotImplementedError("Tool does not support async")
# TODO: this is for backwards compatibility, remove in future
def __init__(
self, name: str, func: Callable, description: str, **kwargs: Any
) -> None:
"""Initialize tool."""
super(Tool, self).__init__(
name=name, func=func, description=description, **kwargs
)
@classmethod
def from_function(
cls,
func: Callable,
name: str, # We keep these required to support backwards compatibility
description: str,
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
**kwargs: Any,
) -> Tool:
"""Initialize tool from a function."""
return cls(
name=name,
func=func,
description=description,
return_direct=return_direct,
args_schema=args_schema,
**kwargs,
)
class StructuredTool(BaseTool):
"""Tool that can operate on any number of inputs."""
@@ -385,3 +494,79 @@ class StructuredTool(BaseTool):
return_direct=return_direct,
**kwargs,
)
def tool(
*args: Union[str, Callable],
return_direct: bool = False,
args_schema: Optional[Type[BaseModel]] = None,
infer_schema: bool = True,
) -> Callable:
"""Make tools out of functions, can be used with or without arguments.
Args:
*args: The arguments to the tool.
return_direct: Whether to return directly from the tool rather
than continuing the agent loop.
args_schema: optional argument schema for user to specify
infer_schema: Whether to infer the schema of the arguments from
the function's signature. This also makes the resultant tool
accept a dictionary input to its `run()` function.
Requires:
- Function must be of type (str) -> str
- Function must have a docstring
Examples:
.. code-block:: python
@tool
def search_api(query: str) -> str:
# Searches the API for the query.
return
@tool("search", return_direct=True)
def search_api(query: str) -> str:
# Searches the API for the query.
return
"""
def _make_with_name(tool_name: str) -> Callable:
def _make_tool(func: Callable) -> BaseTool:
if infer_schema or args_schema is not None:
return StructuredTool.from_function(
func,
name=tool_name,
return_direct=return_direct,
args_schema=args_schema,
infer_schema=infer_schema,
)
# If someone doesn't want a schema applied, we must treat it as
# a simple string->string function
assert func.__doc__ is not None, "Function must have a docstring"
return Tool(
name=tool_name,
func=func,
description=f"{tool_name} tool",
return_direct=return_direct,
)
return _make_tool
if len(args) == 1 and isinstance(args[0], str):
# if the argument is a string, then we use the string as the tool name
# Example usage: @tool("search", return_direct=True)
return _make_with_name(args[0])
elif len(args) == 1 and callable(args[0]):
# if the argument is a function, then we use the function name as the tool name
# Example usage: @tool
return _make_with_name(args[0].__name__)(args[0])
elif len(args) == 0:
# if there are no arguments, then we use the function name as the tool name
# Example usage: @tool(return_direct=True)
def _partial(func: Callable[[str], str]) -> BaseTool:
return _make_with_name(func.__name__)(func)
return _partial
else:
raise ValueError("Too many arguments for tool decorator")

View File

@@ -49,7 +49,7 @@ def marshal_spec(txt: str) -> dict:
return yaml.safe_load(txt)
class AIPLuginToolSchema(BaseModel):
class AIPluginToolSchema(BaseModel):
"""AIPLuginToolSchema."""
tool_input: Optional[str] = ""
@@ -58,7 +58,7 @@ class AIPLuginToolSchema(BaseModel):
class AIPluginTool(BaseTool):
plugin: AIPlugin
api_spec: str
args_schema: Type[AIPLuginToolSchema] = AIPLuginToolSchema
args_schema: Type[AIPluginToolSchema] = AIPluginToolSchema
@classmethod
def from_plugin_url(cls, url: str) -> AIPluginTool: