partner: Update Upstage Model Names and Remove Deprecated Model (#29093)

This PR updates model names in the upstage library to reflect the latest
naming conventions and removes deprecated models.

Changes:

Renamed Models:
- `solar-1-mini-chat` -> `solar-mini`
- `solar-1-mini-embedding-query` -> `embedding-query`

Removed Deprecated Models:
- `layout-analysis` (replaced to `document-parse`)

Reference:
- https://console.upstage.ai/docs/getting-started/overview
-
https://github.com/langchain-ai/langchain-upstage/releases/tag/libs%2Fupstage%2Fv0.5.0

Additional guidelines:
- Make sure optional dependencies are imported within a function.
- Please do not add dependencies to pyproject.toml files (even optional
ones) unless they are required for unit tests.
- Most PRs should not touch more than one package.
- Changes should be backwards compatible.
- If you are adding something to community, do not re-import it in
langchain.

If no one reviews your PR within a few days, please @-mention one of
baskaryan, efriis, eyurtsev, ccurme, vbarda, hwchase17.
This commit is contained in:
Inah Jeon 2025-01-09 00:13:22 +09:00 committed by GitHub
parent 9f5fa50bbf
commit 9d290abccd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 8 additions and 8 deletions

View File

@ -50,7 +50,7 @@ Notebook | Description
[press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai). [press_releases.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/press_releases.ipynb) | Retrieve and query company press release data powered by [Kay.ai](https://kay.ai).
[program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper. [program_aided_language_model.i...](https://github.com/langchain-ai/langchain/tree/master/cookbook/program_aided_language_model.ipynb) | Implement program-aided language models as described in the provided research paper.
[qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources. [qa_citations.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/qa_citations.ipynb) | Different ways to get a model to cite its sources.
[rag_upstage_layout_analysis_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_layout_analysis_groundedness_check.ipynb) | End-to-end RAG example using Upstage Layout Analysis and Groundedness Check. [rag_upstage_document_parse_groundedness_check.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/rag_upstage_document_parse_groundedness_check.ipynb) | End-to-end RAG example using Upstage Document Parse and Groundedness Check.
[retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector. [retrieval_in_sql.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/retrieval_in_sql.ipynb) | Perform retrieval-augmented-generation (rag) on a PostgreSQL database using pgvector.
[sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings. [sales_agent_with_context.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/sales_agent_with_context.ipynb) | Implement a context-aware ai sales agent, salesgpt, that can have natural sales conversations, interact with other systems, and use a product knowledge base to discuss a company's offerings.
[self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset. [self_query_hotel_search.ipynb](https://github.com/langchain-ai/langchain/tree/master/cookbook/self_query_hotel_search.ipynb) | Build a hotel room search feature with self-querying retrieval, using a specific hotel recommendation dataset.

View File

@ -4,8 +4,8 @@
"cell_type": "markdown", "cell_type": "markdown",
"metadata": {}, "metadata": {},
"source": [ "source": [
"# RAG using Upstage Layout Analysis and Groundedness Check\n", "# RAG using Upstage Document Parse and Groundedness Check\n",
"This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Layout Analysis and Groundedness Check." "This example illustrates RAG using [Upstage](https://python.langchain.com/docs/integrations/providers/upstage/) Document Parse and Groundedness Check."
] ]
}, },
{ {
@ -23,16 +23,16 @@
"from langchain_core.runnables.base import RunnableSerializable\n", "from langchain_core.runnables.base import RunnableSerializable\n",
"from langchain_upstage import (\n", "from langchain_upstage import (\n",
" ChatUpstage,\n", " ChatUpstage,\n",
" UpstageDocumentParseLoader,\n",
" UpstageEmbeddings,\n", " UpstageEmbeddings,\n",
" UpstageGroundednessCheck,\n", " UpstageGroundednessCheck,\n",
" UpstageLayoutAnalysisLoader,\n",
")\n", ")\n",
"\n", "\n",
"model = ChatUpstage()\n", "model = ChatUpstage()\n",
"\n", "\n",
"files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n", "files = [\"/PATH/TO/YOUR/FILE.pdf\", \"/PATH/TO/YOUR/FILE2.pdf\"]\n",
"\n", "\n",
"loader = UpstageLayoutAnalysisLoader(file_path=files, split=\"element\")\n", "loader = UpstageDocumentParseLoader(file_path=files, split=\"element\")\n",
"\n", "\n",
"docs = loader.load()\n", "docs = loader.load()\n",
"\n", "\n",

View File

@ -24,7 +24,7 @@ class SolarChat(SolarCommon, ChatOpenAI): # type: ignore[override, override]
from langchain_community.chat_models.solar import SolarChat from langchain_community.chat_models.solar import SolarChat
solar = SolarChat(model="solar-1-mini-chat") solar = SolarChat(model="solar-mini")
""" """
max_tokens: int = Field(default=1024) max_tokens: int = Field(default=1024)

View File

@ -70,7 +70,7 @@ class SolarEmbeddings(BaseModel, Embeddings):
endpoint_url: str = "https://api.upstage.ai/v1/solar/embeddings" endpoint_url: str = "https://api.upstage.ai/v1/solar/embeddings"
"""Endpoint URL to use.""" """Endpoint URL to use."""
model: str = "solar-1-mini-embedding-query" model: str = "embedding-query"
"""Embeddings model name to use.""" """Embeddings model name to use."""
solar_api_key: Optional[SecretStr] = None solar_api_key: Optional[SecretStr] = None
"""API Key for Solar API.""" """API Key for Solar API."""

View File

@ -44,7 +44,7 @@ class SolarCommon(BaseModel):
base_url: str = SOLAR_SERVICE_URL_BASE base_url: str = SOLAR_SERVICE_URL_BASE
solar_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") solar_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Solar API key. Get it here: https://console.upstage.ai/services/solar""" """Solar API key. Get it here: https://console.upstage.ai/services/solar"""
model_name: str = Field(default="solar-1-mini-chat", alias="model") model_name: str = Field(default="solar-mini", alias="model")
"""Model name. Available models listed here: https://console.upstage.ai/services/solar""" """Model name. Available models listed here: https://console.upstage.ai/services/solar"""
max_tokens: int = Field(default=1024) max_tokens: int = Field(default=1024)
temperature: float = 0.3 temperature: float = 0.3