mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-27 17:08:47 +00:00
standard-tests: show right classes in api docs (#28591)
This commit is contained in:
parent
246c10a1cc
commit
9e2abcd152
@ -1,3 +1,11 @@
|
||||
"""
|
||||
Standard tests for the BaseStore abstraction
|
||||
|
||||
We don't recommend implementing externally managed BaseStore abstractions at this time.
|
||||
|
||||
:private:
|
||||
"""
|
||||
|
||||
from abc import abstractmethod
|
||||
from typing import AsyncGenerator, Generator, Generic, Tuple, TypeVar
|
||||
|
||||
|
@ -1,3 +1,11 @@
|
||||
"""
|
||||
Standard tests for the BaseCache abstraction
|
||||
|
||||
We don't recommend implementing externally managed BaseCache abstractions at this time.
|
||||
|
||||
:private:
|
||||
"""
|
||||
|
||||
from abc import abstractmethod
|
||||
|
||||
import pytest
|
||||
|
@ -16,7 +16,7 @@ from langchain_core.messages import (
|
||||
)
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.tools import tool
|
||||
from langchain_core.tools import BaseTool, tool
|
||||
from langchain_core.utils.function_calling import tool_example_to_messages
|
||||
from pydantic import BaseModel, Field
|
||||
from pydantic.v1 import BaseModel as BaseModelV1
|
||||
@ -24,16 +24,29 @@ from pydantic.v1 import Field as FieldV1
|
||||
|
||||
from langchain_tests.unit_tests.chat_models import (
|
||||
ChatModelTests,
|
||||
my_adder_tool,
|
||||
)
|
||||
from langchain_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION
|
||||
|
||||
|
||||
class MagicFunctionSchema(BaseModel):
|
||||
def _get_joke_class() -> type[BaseModel]:
|
||||
"""
|
||||
:private:
|
||||
"""
|
||||
|
||||
class Joke(BaseModel):
|
||||
"""Joke to tell user."""
|
||||
|
||||
setup: str = Field(description="question to set up a joke")
|
||||
punchline: str = Field(description="answer to resolve the joke")
|
||||
|
||||
return Joke
|
||||
|
||||
|
||||
class _MagicFunctionSchema(BaseModel):
|
||||
input: int = Field(..., gt=-1000, lt=1000)
|
||||
|
||||
|
||||
@tool(args_schema=MagicFunctionSchema)
|
||||
@tool(args_schema=_MagicFunctionSchema)
|
||||
def magic_function(input: int) -> int:
|
||||
"""Applies a magic function to an input."""
|
||||
return input + 2
|
||||
@ -45,13 +58,6 @@ def magic_function_no_args() -> int:
|
||||
return 5
|
||||
|
||||
|
||||
class Joke(BaseModel):
|
||||
"""Joke to tell user."""
|
||||
|
||||
setup: str = Field(description="question to set up a joke")
|
||||
punchline: str = Field(description="answer to resolve the joke")
|
||||
|
||||
|
||||
def _validate_tool_call_message(message: BaseMessage) -> None:
|
||||
assert isinstance(message, AIMessage)
|
||||
assert len(message.tool_calls) == 1
|
||||
@ -103,12 +109,201 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
.. note::
|
||||
API references for individual test methods include troubleshooting tips.
|
||||
|
||||
.. note::
|
||||
Test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the properties on the
|
||||
class. Relevant properties are mentioned in the references for each method.
|
||||
See this page for detail on all properties:
|
||||
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
|
||||
|
||||
Test subclasses must implement the following two properties:
|
||||
|
||||
chat_model_class
|
||||
The chat model class to test, e.g., ``ChatParrotLink``.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_class(self) -> Type[ChatParrotLink]:
|
||||
return ChatParrotLink
|
||||
|
||||
chat_model_params
|
||||
Initialization parameters for the chat model.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
return {"model": "bird-brain-001", "temperature": 0}
|
||||
|
||||
In addition, test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the following properties.
|
||||
Expand to see details:
|
||||
|
||||
.. dropdown:: has_tool_calling
|
||||
|
||||
Boolean property indicating whether the chat model supports tool calling.
|
||||
|
||||
By default, this is determined by whether the chat model's `bind_tools` method
|
||||
is overridden. It typically does not need to be overridden on the test class.
|
||||
|
||||
.. dropdown:: tool_choice_value
|
||||
|
||||
Value to use for tool choice when used in tests.
|
||||
|
||||
Some tests for tool calling features attempt to force tool calling via a
|
||||
`tool_choice` parameter. A common value for this parameter is "any". Defaults
|
||||
to `None`.
|
||||
|
||||
Note: if the value is set to "tool_name", the name of the tool used in each
|
||||
test will be set as the value for `tool_choice`.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def tool_choice_value(self) -> Optional[str]:
|
||||
return "any"
|
||||
|
||||
.. dropdown:: has_structured_output
|
||||
|
||||
Boolean property indicating whether the chat model supports structured
|
||||
output.
|
||||
|
||||
By default, this is determined by whether the chat model's
|
||||
`with_structured_output` method is overridden. If the base implementation is
|
||||
intended to be used, this method should be overridden.
|
||||
|
||||
See: https://python.langchain.com/docs/concepts/structured_outputs/
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def has_structured_output(self) -> bool:
|
||||
return True
|
||||
|
||||
.. dropdown:: supports_image_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``.
|
||||
|
||||
If set to ``True``, the chat model will be tested using content blocks of the
|
||||
form
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "describe the weather in this image"},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
]
|
||||
|
||||
See https://python.langchain.com/docs/concepts/multimodality/
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
return True
|
||||
|
||||
.. dropdown:: supports_video_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``. No current tests are written for this feature.
|
||||
|
||||
.. dropdown:: returns_usage_metadata
|
||||
|
||||
Boolean property indicating whether the chat model returns usage metadata
|
||||
on invoke and streaming responses.
|
||||
|
||||
``usage_metadata`` is an optional dict attribute on AIMessages that track input
|
||||
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def returns_usage_metadata(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supports_anthropic_inputs
|
||||
|
||||
Boolean property indicating whether the chat model supports Anthropic-style
|
||||
inputs.
|
||||
|
||||
These inputs might feature "tool use" and "tool result" content blocks, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[
|
||||
{"type": "text", "text": "Hmm let me think about that"},
|
||||
{
|
||||
"type": "tool_use",
|
||||
"input": {"fav_color": "green"},
|
||||
"id": "foo",
|
||||
"name": "color_picker",
|
||||
},
|
||||
]
|
||||
|
||||
If set to ``True``, the chat model will be tested using content blocks of this
|
||||
form.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supports_image_tool_message
|
||||
|
||||
Boolean property indicating whether the chat model supports ToolMessages
|
||||
that include image content, e.g.,
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
ToolMessage(
|
||||
content=[
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
|
||||
},
|
||||
],
|
||||
tool_call_id="1",
|
||||
name="random_image",
|
||||
)
|
||||
|
||||
If set to ``True``, the chat model will be tested with message sequences that
|
||||
include ToolMessages of this form.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
return False
|
||||
|
||||
.. dropdown:: supported_usage_metadata_details
|
||||
|
||||
Property controlling what usage metadata details are emitted in both invoke
|
||||
and stream.
|
||||
|
||||
``usage_metadata`` is an optional dict attribute on AIMessages that track input
|
||||
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
|
||||
|
||||
It includes optional keys ``input_token_details`` and ``output_token_details``
|
||||
that can track usage details associated with special types of tokens, such as
|
||||
cached, audio, or reasoning.
|
||||
|
||||
Only needs to be overridden if these details are supplied.
|
||||
"""
|
||||
|
||||
@property
|
||||
@ -908,6 +1103,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
Joke = _get_joke_class()
|
||||
# Pydantic class
|
||||
# Type ignoring since the interface only officially supports pydantic 1
|
||||
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
|
||||
@ -960,6 +1156,8 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
if not self.has_tool_calling:
|
||||
pytest.skip("Test requires tool calling.")
|
||||
|
||||
Joke = _get_joke_class()
|
||||
|
||||
# Pydantic class
|
||||
# Type ignoring since the interface only officially supports pydantic 1
|
||||
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
|
||||
@ -1089,7 +1287,9 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
joke_result = chat.invoke("Give me a joke about cats, include the punchline.")
|
||||
assert isinstance(joke_result, Joke)
|
||||
|
||||
def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None:
|
||||
def test_tool_message_histories_string_content(
|
||||
self, model: BaseChatModel, my_adder_tool: BaseTool
|
||||
) -> None:
|
||||
"""Test that message histories are compatible with string tool contents
|
||||
(e.g. OpenAI format). If a model passes this test, it should be compatible
|
||||
with messages generated from providers following OpenAI format.
|
||||
@ -1158,6 +1358,7 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
def test_tool_message_histories_list_content(
|
||||
self,
|
||||
model: BaseChatModel,
|
||||
my_adder_tool: BaseTool,
|
||||
) -> None:
|
||||
"""Test that message histories are compatible with list tool contents
|
||||
(e.g. Anthropic format).
|
||||
@ -1246,7 +1447,9 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
result_list_content = model_with_tools.invoke(messages_list_content)
|
||||
assert isinstance(result_list_content, AIMessage)
|
||||
|
||||
def test_structured_few_shot_examples(self, model: BaseChatModel) -> None:
|
||||
def test_structured_few_shot_examples(
|
||||
self, model: BaseChatModel, my_adder_tool: BaseTool
|
||||
) -> None:
|
||||
"""Test that the model can process few-shot examples with tool calls.
|
||||
|
||||
These are represented as a sequence of messages of the following form:
|
||||
@ -1557,7 +1760,9 @@ class ChatModelIntegrationTests(ChatModelTests):
|
||||
]
|
||||
model.bind_tools([color_picker]).invoke(messages)
|
||||
|
||||
def test_tool_message_error_status(self, model: BaseChatModel) -> None:
|
||||
def test_tool_message_error_status(
|
||||
self, model: BaseChatModel, my_adder_tool: BaseTool
|
||||
) -> None:
|
||||
"""Test that ToolMessage with ``status="error"`` can be handled.
|
||||
|
||||
These messages may take the form:
|
||||
|
@ -1,4 +1,12 @@
|
||||
"""Test suite to check index implementations."""
|
||||
"""Test suite to check index implementations.
|
||||
|
||||
Standard tests for the DocumentIndex abstraction
|
||||
|
||||
We don't recommend implementing externally managed DocumentIndex abstractions at this
|
||||
time.
|
||||
|
||||
:private:
|
||||
"""
|
||||
|
||||
import inspect
|
||||
import uuid
|
||||
|
@ -11,7 +11,7 @@ import pytest
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.load import dumpd, load
|
||||
from langchain_core.runnables import RunnableBinding
|
||||
from langchain_core.tools import tool
|
||||
from langchain_core.tools import BaseTool, tool
|
||||
from pydantic import BaseModel, Field, SecretStr
|
||||
from pydantic.v1 import (
|
||||
BaseModel as BaseModelV1,
|
||||
@ -28,15 +28,12 @@ from langchain_tests.base import BaseStandardTests
|
||||
from langchain_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION
|
||||
|
||||
|
||||
class Person(BaseModel): # Used by some dependent tests. Should be deprecated.
|
||||
"""Record attributes of a person."""
|
||||
|
||||
name: str = Field(..., description="The name of the person.")
|
||||
age: int = Field(..., description="The age of the person.")
|
||||
|
||||
|
||||
def generate_schema_pydantic_v1_from_2() -> Any:
|
||||
"""Use to generate a schema from v1 namespace in pydantic 2."""
|
||||
"""
|
||||
Use to generate a schema from v1 namespace in pydantic 2.
|
||||
|
||||
:private:
|
||||
"""
|
||||
if PYDANTIC_MAJOR_VERSION != 2:
|
||||
raise AssertionError("This function is only compatible with Pydantic v2.")
|
||||
|
||||
@ -50,7 +47,11 @@ def generate_schema_pydantic_v1_from_2() -> Any:
|
||||
|
||||
|
||||
def generate_schema_pydantic() -> Any:
|
||||
"""Works with either pydantic 1 or 2"""
|
||||
"""
|
||||
Works with either pydantic 1 or 2
|
||||
|
||||
:private:
|
||||
"""
|
||||
|
||||
class PersonA(BaseModel):
|
||||
"""Record attributes of a person."""
|
||||
@ -67,20 +68,153 @@ if PYDANTIC_MAJOR_VERSION == 2:
|
||||
TEST_PYDANTIC_MODELS.append(generate_schema_pydantic_v1_from_2())
|
||||
|
||||
|
||||
@tool
|
||||
def my_adder_tool(a: int, b: int) -> int:
|
||||
"""Takes two integers, a and b, and returns their sum."""
|
||||
return a + b
|
||||
|
||||
|
||||
def my_adder(a: int, b: int) -> int:
|
||||
"""Takes two integers, a and b, and returns their sum."""
|
||||
return a + b
|
||||
|
||||
|
||||
class ChatModelTests(BaseStandardTests):
|
||||
"""Base class for chat model tests.
|
||||
|
||||
:private:
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def chat_model_class(self) -> Type[BaseChatModel]:
|
||||
"""The chat model class to test, e.g., `ChatParrotLink`."""
|
||||
...
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
"""Initialization parameters for the chat mobdel."""
|
||||
return {}
|
||||
|
||||
@property
|
||||
def standard_chat_model_params(self) -> dict:
|
||||
""":meta private:"""
|
||||
return {
|
||||
"temperature": 0,
|
||||
"max_tokens": 100,
|
||||
"timeout": 60,
|
||||
"stop": [],
|
||||
"max_retries": 2,
|
||||
}
|
||||
|
||||
@pytest.fixture
|
||||
def model(self) -> BaseChatModel:
|
||||
"""Fixture that returns an instance of the chat model. Should not be
|
||||
overridden."""
|
||||
return self.chat_model_class(
|
||||
**{**self.standard_chat_model_params, **self.chat_model_params}
|
||||
)
|
||||
|
||||
@pytest.fixture
|
||||
def my_adder_tool(self) -> BaseTool:
|
||||
@tool
|
||||
def my_adder_tool(a: int, b: int) -> int:
|
||||
"""Takes two integers, a and b, and returns their sum."""
|
||||
return a + b
|
||||
|
||||
return my_adder_tool
|
||||
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
"""Boolean property indicating whether the model supports tool calling."""
|
||||
return self.chat_model_class.bind_tools is not BaseChatModel.bind_tools
|
||||
|
||||
@property
|
||||
def tool_choice_value(self) -> Optional[str]:
|
||||
"""Value to use for tool choice when used in tests."""
|
||||
return None
|
||||
|
||||
@property
|
||||
def has_structured_output(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports structured
|
||||
output."""
|
||||
return (
|
||||
self.chat_model_class.with_structured_output
|
||||
is not BaseChatModel.with_structured_output
|
||||
)
|
||||
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_video_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``. No current tests are written for this feature."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def returns_usage_metadata(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model returns usage metadata
|
||||
on invoke and streaming responses."""
|
||||
return True
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports Anthropic-style
|
||||
inputs."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports ToolMessages
|
||||
that include image content."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supported_usage_metadata_details(
|
||||
self,
|
||||
) -> Dict[
|
||||
Literal["invoke", "stream"],
|
||||
List[
|
||||
Literal[
|
||||
"audio_input",
|
||||
"audio_output",
|
||||
"reasoning_output",
|
||||
"cache_read_input",
|
||||
"cache_creation_input",
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""Property controlling what usage metadata details are emitted in both invoke
|
||||
and stream. Only needs to be overridden if these details are returned by the
|
||||
model."""
|
||||
return {"invoke": [], "stream": []}
|
||||
|
||||
|
||||
class ChatModelUnitTests(ChatModelTests):
|
||||
"""Base class for chat model unit tests.
|
||||
|
||||
Test subclasses must implement the ``chat_model_class`` and
|
||||
``chat_model_params`` properties to specify what model to test and its
|
||||
initialization parameters.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Type
|
||||
|
||||
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||
from my_package.chat_models import MyChatModel
|
||||
|
||||
|
||||
class TestMyChatModelUnit(ChatModelUnitTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[MyChatModel]:
|
||||
# Return the chat model class to test here
|
||||
return MyChatModel
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
# Return initialization parameters for the model.
|
||||
return {"model": "model-001", "temperature": 0}
|
||||
|
||||
.. note::
|
||||
API references for individual test methods include troubleshooting tips.
|
||||
|
||||
|
||||
Test subclasses must implement the following two properties:
|
||||
|
||||
chat_model_class
|
||||
@ -275,146 +409,6 @@ class ChatModelTests(BaseStandardTests):
|
||||
cached, audio, or reasoning.
|
||||
|
||||
Only needs to be overridden if these details are supplied.
|
||||
""" # noqa: E501
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def chat_model_class(self) -> Type[BaseChatModel]:
|
||||
"""The chat model class to test, e.g., `ChatParrotLink`."""
|
||||
...
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
"""Initialization parameters for the chat mobdel."""
|
||||
return {}
|
||||
|
||||
@property
|
||||
def standard_chat_model_params(self) -> dict:
|
||||
""":meta private:"""
|
||||
return {
|
||||
"temperature": 0,
|
||||
"max_tokens": 100,
|
||||
"timeout": 60,
|
||||
"stop": [],
|
||||
"max_retries": 2,
|
||||
}
|
||||
|
||||
@pytest.fixture
|
||||
def model(self) -> BaseChatModel:
|
||||
"""Fixture that returns an instance of the chat model. Should not be
|
||||
overridden."""
|
||||
return self.chat_model_class(
|
||||
**{**self.standard_chat_model_params, **self.chat_model_params}
|
||||
)
|
||||
|
||||
@property
|
||||
def has_tool_calling(self) -> bool:
|
||||
"""Boolean property indicating whether the model supports tool calling."""
|
||||
return self.chat_model_class.bind_tools is not BaseChatModel.bind_tools
|
||||
|
||||
@property
|
||||
def tool_choice_value(self) -> Optional[str]:
|
||||
"""Value to use for tool choice when used in tests."""
|
||||
return None
|
||||
|
||||
@property
|
||||
def has_structured_output(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports structured
|
||||
output."""
|
||||
return (
|
||||
self.chat_model_class.with_structured_output
|
||||
is not BaseChatModel.with_structured_output
|
||||
)
|
||||
|
||||
@property
|
||||
def supports_image_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_video_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports image inputs.
|
||||
Defaults to ``False``. No current tests are written for this feature."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def returns_usage_metadata(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model returns usage metadata
|
||||
on invoke and streaming responses."""
|
||||
return True
|
||||
|
||||
@property
|
||||
def supports_anthropic_inputs(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports Anthropic-style
|
||||
inputs."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supports_image_tool_message(self) -> bool:
|
||||
"""Boolean property indicating whether the chat model supports ToolMessages
|
||||
that include image content."""
|
||||
return False
|
||||
|
||||
@property
|
||||
def supported_usage_metadata_details(
|
||||
self,
|
||||
) -> Dict[
|
||||
Literal["invoke", "stream"],
|
||||
List[
|
||||
Literal[
|
||||
"audio_input",
|
||||
"audio_output",
|
||||
"reasoning_output",
|
||||
"cache_read_input",
|
||||
"cache_creation_input",
|
||||
]
|
||||
],
|
||||
]:
|
||||
"""Property controlling what usage metadata details are emitted in both invoke
|
||||
and stream. Only needs to be overridden if these details are returned by the
|
||||
model."""
|
||||
return {"invoke": [], "stream": []}
|
||||
|
||||
|
||||
class ChatModelUnitTests(ChatModelTests):
|
||||
"""Base class for chat model unit tests.
|
||||
|
||||
Test subclasses must implement the ``chat_model_class`` and
|
||||
``chat_model_params`` properties to specify what model to test and its
|
||||
initialization parameters.
|
||||
|
||||
Example:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from typing import Type
|
||||
|
||||
from langchain_tests.unit_tests import ChatModelUnitTests
|
||||
from my_package.chat_models import MyChatModel
|
||||
|
||||
|
||||
class TestMyChatModelUnit(ChatModelUnitTests):
|
||||
@property
|
||||
def chat_model_class(self) -> Type[MyChatModel]:
|
||||
# Return the chat model class to test here
|
||||
return MyChatModel
|
||||
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
# Return initialization parameters for the model.
|
||||
return {"model": "model-001", "temperature": 0}
|
||||
|
||||
.. note::
|
||||
API references for individual test methods include troubleshooting tips.
|
||||
|
||||
.. note::
|
||||
Test subclasses can control what features are tested (such as tool
|
||||
calling or multi-modality) by selectively overriding the properties on the
|
||||
class. Relevant properties are mentioned in the references for each method.
|
||||
See this page for detail on all properties:
|
||||
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
|
||||
|
||||
|
||||
Testing initialization from environment variables
|
||||
Some unit tests may require testing initialization from environment variables.
|
||||
@ -526,6 +520,7 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
def test_bind_tool_pydantic(
|
||||
self,
|
||||
model: BaseChatModel,
|
||||
my_adder_tool: BaseTool,
|
||||
) -> None:
|
||||
"""Test that chat model correctly handles Pydantic models that are passed
|
||||
into ``bind_tools``. Test is skipped if the ``has_tool_calling`` property
|
||||
@ -542,6 +537,10 @@ class ChatModelUnitTests(ChatModelTests):
|
||||
if not self.has_tool_calling:
|
||||
return
|
||||
|
||||
def my_adder(a: int, b: int) -> int:
|
||||
"""Takes two integers, a and b, and returns their sum."""
|
||||
return a + b
|
||||
|
||||
tools = [my_adder_tool, my_adder]
|
||||
|
||||
for pydantic_model in TEST_PYDANTIC_MODELS:
|
||||
|
@ -11,6 +11,10 @@ from langchain_tests.base import BaseStandardTests
|
||||
|
||||
|
||||
class EmbeddingsTests(BaseStandardTests):
|
||||
"""
|
||||
:private:
|
||||
"""
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def embeddings_class(self) -> Type[Embeddings]: ...
|
||||
|
Loading…
Reference in New Issue
Block a user