standard-tests: show right classes in api docs (#28591)

This commit is contained in:
Erick Friis 2024-12-06 14:48:13 -08:00 committed by GitHub
parent 246c10a1cc
commit 9e2abcd152
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
6 changed files with 414 additions and 182 deletions

View File

@ -1,3 +1,11 @@
"""
Standard tests for the BaseStore abstraction
We don't recommend implementing externally managed BaseStore abstractions at this time.
:private:
"""
from abc import abstractmethod
from typing import AsyncGenerator, Generator, Generic, Tuple, TypeVar

View File

@ -1,3 +1,11 @@
"""
Standard tests for the BaseCache abstraction
We don't recommend implementing externally managed BaseCache abstractions at this time.
:private:
"""
from abc import abstractmethod
import pytest

View File

@ -16,7 +16,7 @@ from langchain_core.messages import (
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.tools import tool
from langchain_core.tools import BaseTool, tool
from langchain_core.utils.function_calling import tool_example_to_messages
from pydantic import BaseModel, Field
from pydantic.v1 import BaseModel as BaseModelV1
@ -24,16 +24,29 @@ from pydantic.v1 import Field as FieldV1
from langchain_tests.unit_tests.chat_models import (
ChatModelTests,
my_adder_tool,
)
from langchain_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION
class MagicFunctionSchema(BaseModel):
def _get_joke_class() -> type[BaseModel]:
"""
:private:
"""
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
return Joke
class _MagicFunctionSchema(BaseModel):
input: int = Field(..., gt=-1000, lt=1000)
@tool(args_schema=MagicFunctionSchema)
@tool(args_schema=_MagicFunctionSchema)
def magic_function(input: int) -> int:
"""Applies a magic function to an input."""
return input + 2
@ -45,13 +58,6 @@ def magic_function_no_args() -> int:
return 5
class Joke(BaseModel):
"""Joke to tell user."""
setup: str = Field(description="question to set up a joke")
punchline: str = Field(description="answer to resolve the joke")
def _validate_tool_call_message(message: BaseMessage) -> None:
assert isinstance(message, AIMessage)
assert len(message.tool_calls) == 1
@ -103,12 +109,201 @@ class ChatModelIntegrationTests(ChatModelTests):
.. note::
API references for individual test methods include troubleshooting tips.
.. note::
Test subclasses can control what features are tested (such as tool
calling or multi-modality) by selectively overriding the properties on the
class. Relevant properties are mentioned in the references for each method.
See this page for detail on all properties:
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
Test subclasses must implement the following two properties:
chat_model_class
The chat model class to test, e.g., ``ChatParrotLink``.
Example:
.. code-block:: python
@property
def chat_model_class(self) -> Type[ChatParrotLink]:
return ChatParrotLink
chat_model_params
Initialization parameters for the chat model.
Example:
.. code-block:: python
@property
def chat_model_params(self) -> dict:
return {"model": "bird-brain-001", "temperature": 0}
In addition, test subclasses can control what features are tested (such as tool
calling or multi-modality) by selectively overriding the following properties.
Expand to see details:
.. dropdown:: has_tool_calling
Boolean property indicating whether the chat model supports tool calling.
By default, this is determined by whether the chat model's `bind_tools` method
is overridden. It typically does not need to be overridden on the test class.
.. dropdown:: tool_choice_value
Value to use for tool choice when used in tests.
Some tests for tool calling features attempt to force tool calling via a
`tool_choice` parameter. A common value for this parameter is "any". Defaults
to `None`.
Note: if the value is set to "tool_name", the name of the tool used in each
test will be set as the value for `tool_choice`.
Example:
.. code-block:: python
@property
def tool_choice_value(self) -> Optional[str]:
return "any"
.. dropdown:: has_structured_output
Boolean property indicating whether the chat model supports structured
output.
By default, this is determined by whether the chat model's
`with_structured_output` method is overridden. If the base implementation is
intended to be used, this method should be overridden.
See: https://python.langchain.com/docs/concepts/structured_outputs/
Example:
.. code-block:: python
@property
def has_structured_output(self) -> bool:
return True
.. dropdown:: supports_image_inputs
Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``.
If set to ``True``, the chat model will be tested using content blocks of the
form
.. code-block:: python
[
{"type": "text", "text": "describe the weather in this image"},
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
]
See https://python.langchain.com/docs/concepts/multimodality/
Example:
.. code-block:: python
@property
def supports_image_inputs(self) -> bool:
return True
.. dropdown:: supports_video_inputs
Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``. No current tests are written for this feature.
.. dropdown:: returns_usage_metadata
Boolean property indicating whether the chat model returns usage metadata
on invoke and streaming responses.
``usage_metadata`` is an optional dict attribute on AIMessages that track input
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
Example:
.. code-block:: python
@property
def returns_usage_metadata(self) -> bool:
return False
.. dropdown:: supports_anthropic_inputs
Boolean property indicating whether the chat model supports Anthropic-style
inputs.
These inputs might feature "tool use" and "tool result" content blocks, e.g.,
.. code-block:: python
[
{"type": "text", "text": "Hmm let me think about that"},
{
"type": "tool_use",
"input": {"fav_color": "green"},
"id": "foo",
"name": "color_picker",
},
]
If set to ``True``, the chat model will be tested using content blocks of this
form.
Example:
.. code-block:: python
@property
def supports_anthropic_inputs(self) -> bool:
return False
.. dropdown:: supports_image_tool_message
Boolean property indicating whether the chat model supports ToolMessages
that include image content, e.g.,
.. code-block:: python
ToolMessage(
content=[
{
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{image_data}"},
},
],
tool_call_id="1",
name="random_image",
)
If set to ``True``, the chat model will be tested with message sequences that
include ToolMessages of this form.
Example:
.. code-block:: python
@property
def supports_image_tool_message(self) -> bool:
return False
.. dropdown:: supported_usage_metadata_details
Property controlling what usage metadata details are emitted in both invoke
and stream.
``usage_metadata`` is an optional dict attribute on AIMessages that track input
and output tokens: https://python.langchain.com/api_reference/core/messages/langchain_core.messages.ai.UsageMetadata.html
It includes optional keys ``input_token_details`` and ``output_token_details``
that can track usage details associated with special types of tokens, such as
cached, audio, or reasoning.
Only needs to be overridden if these details are supplied.
"""
@property
@ -908,6 +1103,7 @@ class ChatModelIntegrationTests(ChatModelTests):
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
Joke = _get_joke_class()
# Pydantic class
# Type ignoring since the interface only officially supports pydantic 1
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
@ -960,6 +1156,8 @@ class ChatModelIntegrationTests(ChatModelTests):
if not self.has_tool_calling:
pytest.skip("Test requires tool calling.")
Joke = _get_joke_class()
# Pydantic class
# Type ignoring since the interface only officially supports pydantic 1
# or pydantic.v1.BaseModel but not pydantic.BaseModel from pydantic 2.
@ -1089,7 +1287,9 @@ class ChatModelIntegrationTests(ChatModelTests):
joke_result = chat.invoke("Give me a joke about cats, include the punchline.")
assert isinstance(joke_result, Joke)
def test_tool_message_histories_string_content(self, model: BaseChatModel) -> None:
def test_tool_message_histories_string_content(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
"""Test that message histories are compatible with string tool contents
(e.g. OpenAI format). If a model passes this test, it should be compatible
with messages generated from providers following OpenAI format.
@ -1158,6 +1358,7 @@ class ChatModelIntegrationTests(ChatModelTests):
def test_tool_message_histories_list_content(
self,
model: BaseChatModel,
my_adder_tool: BaseTool,
) -> None:
"""Test that message histories are compatible with list tool contents
(e.g. Anthropic format).
@ -1246,7 +1447,9 @@ class ChatModelIntegrationTests(ChatModelTests):
result_list_content = model_with_tools.invoke(messages_list_content)
assert isinstance(result_list_content, AIMessage)
def test_structured_few_shot_examples(self, model: BaseChatModel) -> None:
def test_structured_few_shot_examples(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
"""Test that the model can process few-shot examples with tool calls.
These are represented as a sequence of messages of the following form:
@ -1557,7 +1760,9 @@ class ChatModelIntegrationTests(ChatModelTests):
]
model.bind_tools([color_picker]).invoke(messages)
def test_tool_message_error_status(self, model: BaseChatModel) -> None:
def test_tool_message_error_status(
self, model: BaseChatModel, my_adder_tool: BaseTool
) -> None:
"""Test that ToolMessage with ``status="error"`` can be handled.
These messages may take the form:

View File

@ -1,4 +1,12 @@
"""Test suite to check index implementations."""
"""Test suite to check index implementations.
Standard tests for the DocumentIndex abstraction
We don't recommend implementing externally managed DocumentIndex abstractions at this
time.
:private:
"""
import inspect
import uuid

View File

@ -11,7 +11,7 @@ import pytest
from langchain_core.language_models import BaseChatModel
from langchain_core.load import dumpd, load
from langchain_core.runnables import RunnableBinding
from langchain_core.tools import tool
from langchain_core.tools import BaseTool, tool
from pydantic import BaseModel, Field, SecretStr
from pydantic.v1 import (
BaseModel as BaseModelV1,
@ -28,15 +28,12 @@ from langchain_tests.base import BaseStandardTests
from langchain_tests.utils.pydantic import PYDANTIC_MAJOR_VERSION
class Person(BaseModel): # Used by some dependent tests. Should be deprecated.
"""Record attributes of a person."""
name: str = Field(..., description="The name of the person.")
age: int = Field(..., description="The age of the person.")
def generate_schema_pydantic_v1_from_2() -> Any:
"""Use to generate a schema from v1 namespace in pydantic 2."""
"""
Use to generate a schema from v1 namespace in pydantic 2.
:private:
"""
if PYDANTIC_MAJOR_VERSION != 2:
raise AssertionError("This function is only compatible with Pydantic v2.")
@ -50,7 +47,11 @@ def generate_schema_pydantic_v1_from_2() -> Any:
def generate_schema_pydantic() -> Any:
"""Works with either pydantic 1 or 2"""
"""
Works with either pydantic 1 or 2
:private:
"""
class PersonA(BaseModel):
"""Record attributes of a person."""
@ -67,20 +68,153 @@ if PYDANTIC_MAJOR_VERSION == 2:
TEST_PYDANTIC_MODELS.append(generate_schema_pydantic_v1_from_2())
@tool
def my_adder_tool(a: int, b: int) -> int:
"""Takes two integers, a and b, and returns their sum."""
return a + b
def my_adder(a: int, b: int) -> int:
"""Takes two integers, a and b, and returns their sum."""
return a + b
class ChatModelTests(BaseStandardTests):
"""Base class for chat model tests.
:private:
""" # noqa: E501
@property
@abstractmethod
def chat_model_class(self) -> Type[BaseChatModel]:
"""The chat model class to test, e.g., `ChatParrotLink`."""
...
@property
def chat_model_params(self) -> dict:
"""Initialization parameters for the chat mobdel."""
return {}
@property
def standard_chat_model_params(self) -> dict:
""":meta private:"""
return {
"temperature": 0,
"max_tokens": 100,
"timeout": 60,
"stop": [],
"max_retries": 2,
}
@pytest.fixture
def model(self) -> BaseChatModel:
"""Fixture that returns an instance of the chat model. Should not be
overridden."""
return self.chat_model_class(
**{**self.standard_chat_model_params, **self.chat_model_params}
)
@pytest.fixture
def my_adder_tool(self) -> BaseTool:
@tool
def my_adder_tool(a: int, b: int) -> int:
"""Takes two integers, a and b, and returns their sum."""
return a + b
return my_adder_tool
@property
def has_tool_calling(self) -> bool:
"""Boolean property indicating whether the model supports tool calling."""
return self.chat_model_class.bind_tools is not BaseChatModel.bind_tools
@property
def tool_choice_value(self) -> Optional[str]:
"""Value to use for tool choice when used in tests."""
return None
@property
def has_structured_output(self) -> bool:
"""Boolean property indicating whether the chat model supports structured
output."""
return (
self.chat_model_class.with_structured_output
is not BaseChatModel.with_structured_output
)
@property
def supports_image_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``."""
return False
@property
def supports_video_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``. No current tests are written for this feature."""
return False
@property
def returns_usage_metadata(self) -> bool:
"""Boolean property indicating whether the chat model returns usage metadata
on invoke and streaming responses."""
return True
@property
def supports_anthropic_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports Anthropic-style
inputs."""
return False
@property
def supports_image_tool_message(self) -> bool:
"""Boolean property indicating whether the chat model supports ToolMessages
that include image content."""
return False
@property
def supported_usage_metadata_details(
self,
) -> Dict[
Literal["invoke", "stream"],
List[
Literal[
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
]
],
]:
"""Property controlling what usage metadata details are emitted in both invoke
and stream. Only needs to be overridden if these details are returned by the
model."""
return {"invoke": [], "stream": []}
class ChatModelUnitTests(ChatModelTests):
"""Base class for chat model unit tests.
Test subclasses must implement the ``chat_model_class`` and
``chat_model_params`` properties to specify what model to test and its
initialization parameters.
Example:
.. code-block:: python
from typing import Type
from langchain_tests.unit_tests import ChatModelUnitTests
from my_package.chat_models import MyChatModel
class TestMyChatModelUnit(ChatModelUnitTests):
@property
def chat_model_class(self) -> Type[MyChatModel]:
# Return the chat model class to test here
return MyChatModel
@property
def chat_model_params(self) -> dict:
# Return initialization parameters for the model.
return {"model": "model-001", "temperature": 0}
.. note::
API references for individual test methods include troubleshooting tips.
Test subclasses must implement the following two properties:
chat_model_class
@ -275,146 +409,6 @@ class ChatModelTests(BaseStandardTests):
cached, audio, or reasoning.
Only needs to be overridden if these details are supplied.
""" # noqa: E501
@property
@abstractmethod
def chat_model_class(self) -> Type[BaseChatModel]:
"""The chat model class to test, e.g., `ChatParrotLink`."""
...
@property
def chat_model_params(self) -> dict:
"""Initialization parameters for the chat mobdel."""
return {}
@property
def standard_chat_model_params(self) -> dict:
""":meta private:"""
return {
"temperature": 0,
"max_tokens": 100,
"timeout": 60,
"stop": [],
"max_retries": 2,
}
@pytest.fixture
def model(self) -> BaseChatModel:
"""Fixture that returns an instance of the chat model. Should not be
overridden."""
return self.chat_model_class(
**{**self.standard_chat_model_params, **self.chat_model_params}
)
@property
def has_tool_calling(self) -> bool:
"""Boolean property indicating whether the model supports tool calling."""
return self.chat_model_class.bind_tools is not BaseChatModel.bind_tools
@property
def tool_choice_value(self) -> Optional[str]:
"""Value to use for tool choice when used in tests."""
return None
@property
def has_structured_output(self) -> bool:
"""Boolean property indicating whether the chat model supports structured
output."""
return (
self.chat_model_class.with_structured_output
is not BaseChatModel.with_structured_output
)
@property
def supports_image_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``."""
return False
@property
def supports_video_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports image inputs.
Defaults to ``False``. No current tests are written for this feature."""
return False
@property
def returns_usage_metadata(self) -> bool:
"""Boolean property indicating whether the chat model returns usage metadata
on invoke and streaming responses."""
return True
@property
def supports_anthropic_inputs(self) -> bool:
"""Boolean property indicating whether the chat model supports Anthropic-style
inputs."""
return False
@property
def supports_image_tool_message(self) -> bool:
"""Boolean property indicating whether the chat model supports ToolMessages
that include image content."""
return False
@property
def supported_usage_metadata_details(
self,
) -> Dict[
Literal["invoke", "stream"],
List[
Literal[
"audio_input",
"audio_output",
"reasoning_output",
"cache_read_input",
"cache_creation_input",
]
],
]:
"""Property controlling what usage metadata details are emitted in both invoke
and stream. Only needs to be overridden if these details are returned by the
model."""
return {"invoke": [], "stream": []}
class ChatModelUnitTests(ChatModelTests):
"""Base class for chat model unit tests.
Test subclasses must implement the ``chat_model_class`` and
``chat_model_params`` properties to specify what model to test and its
initialization parameters.
Example:
.. code-block:: python
from typing import Type
from langchain_tests.unit_tests import ChatModelUnitTests
from my_package.chat_models import MyChatModel
class TestMyChatModelUnit(ChatModelUnitTests):
@property
def chat_model_class(self) -> Type[MyChatModel]:
# Return the chat model class to test here
return MyChatModel
@property
def chat_model_params(self) -> dict:
# Return initialization parameters for the model.
return {"model": "model-001", "temperature": 0}
.. note::
API references for individual test methods include troubleshooting tips.
.. note::
Test subclasses can control what features are tested (such as tool
calling or multi-modality) by selectively overriding the properties on the
class. Relevant properties are mentioned in the references for each method.
See this page for detail on all properties:
https://python.langchain.com/api_reference/standard_tests/unit_tests/langchain_tests.unit_tests.chat_models.ChatModelTests.html
Testing initialization from environment variables
Some unit tests may require testing initialization from environment variables.
@ -526,6 +520,7 @@ class ChatModelUnitTests(ChatModelTests):
def test_bind_tool_pydantic(
self,
model: BaseChatModel,
my_adder_tool: BaseTool,
) -> None:
"""Test that chat model correctly handles Pydantic models that are passed
into ``bind_tools``. Test is skipped if the ``has_tool_calling`` property
@ -542,6 +537,10 @@ class ChatModelUnitTests(ChatModelTests):
if not self.has_tool_calling:
return
def my_adder(a: int, b: int) -> int:
"""Takes two integers, a and b, and returns their sum."""
return a + b
tools = [my_adder_tool, my_adder]
for pydantic_model in TEST_PYDANTIC_MODELS:

View File

@ -11,6 +11,10 @@ from langchain_tests.base import BaseStandardTests
class EmbeddingsTests(BaseStandardTests):
"""
:private:
"""
@property
@abstractmethod
def embeddings_class(self) -> Type[Embeddings]: ...