mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-20 13:54:48 +00:00
docs[patch], templates[patch]: Import from core (#14575)
Update imports to use core for the low-hanging fruit changes. Ran following ```bash git grep -l 'langchain.schema.runnable' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g' git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g' git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g' git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g' git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g' git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g' git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g' git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g' git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g' git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g' git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g' git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g' git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g' git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g' git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g' git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g' git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g' git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g' ```
This commit is contained in:
parent
0a9d933bb2
commit
9ffca3b92a
@ -164,8 +164,8 @@
|
||||
")\n",
|
||||
"\n",
|
||||
"# Chain to query\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"sql_response = (\n",
|
||||
" RunnablePassthrough.assign(schema=get_schema)\n",
|
||||
@ -293,7 +293,7 @@
|
||||
"memory = ConversationBufferMemory(return_messages=True)\n",
|
||||
"\n",
|
||||
"# Chain to query with memory\n",
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"sql_chain = (\n",
|
||||
" RunnablePassthrough.assign(\n",
|
||||
|
@ -200,7 +200,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Generate summaries of text elements\n",
|
||||
@ -270,7 +270,7 @@
|
||||
"import base64\n",
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.schema.messages import HumanMessage\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def encode_image(image_path):\n",
|
||||
@ -355,9 +355,9 @@
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def create_multi_vector_retriever(\n",
|
||||
@ -442,7 +442,7 @@
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from IPython.display import HTML, display\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
@ -237,7 +237,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -320,9 +320,9 @@
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
@ -374,7 +374,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
@ -213,7 +213,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -375,9 +375,9 @@
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
|
||||
@ -646,7 +646,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
@ -211,7 +211,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOllama\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -378,9 +378,9 @@
|
||||
"\n",
|
||||
"from langchain.embeddings import GPT4AllEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"# The vectorstore to use to index the child chunks\n",
|
||||
"vectorstore = Chroma(\n",
|
||||
@ -532,7 +532,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt template\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
|
@ -162,7 +162,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"# Prompt\n",
|
||||
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",
|
||||
@ -202,7 +202,7 @@
|
||||
"import os\n",
|
||||
"from io import BytesIO\n",
|
||||
"\n",
|
||||
"from langchain.schema.messages import HumanMessage\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from PIL import Image\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@ -273,8 +273,8 @@
|
||||
"from base64 import b64decode\n",
|
||||
"\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def create_multi_vector_retriever(\n",
|
||||
@ -475,7 +475,7 @@
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"# Prompt\n",
|
||||
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
|
||||
@ -521,7 +521,7 @@
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def looks_like_base64(sb):\n",
|
||||
|
@ -476,7 +476,7 @@
|
||||
" HumanMessagePromptTemplate,\n",
|
||||
" SystemMessagePromptTemplate,\n",
|
||||
")\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -547,9 +547,9 @@
|
||||
"\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.storage import InMemoryStore\n",
|
||||
"from langchain.vectorstores.chroma import Chroma\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def build_retriever(text_elements, tables, table_summaries):\n",
|
||||
@ -605,7 +605,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"system_prompt = SystemMessagePromptTemplate.from_template(\n",
|
||||
" \"You are a helpful assistant that answers questions based on provided context. Your provided context can include text or tables, \"\n",
|
||||
|
@ -23,7 +23,7 @@
|
||||
"\n",
|
||||
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.pydantic_v1 import BaseModel"
|
||||
"from langchain_core.pydantic_v1 import BaseModel"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -151,11 +151,11 @@
|
||||
"\n",
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
|
||||
"from langchain.schema.runnable import Runnable\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.runnables import Runnable\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.messages import SystemMessage\n",
|
||||
"from langchain.schema.language_model import BaseLanguageModel\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"from langchain_core.language_models import BaseLanguageModel\n",
|
||||
"\n",
|
||||
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
|
||||
"in the following passage together with their properties.\n",
|
||||
|
@ -92,7 +92,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.messages import HumanMessage, SystemMessage"
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -316,9 +316,9 @@
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def prompt_func(data_dict):\n",
|
||||
|
@ -29,7 +29,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.messages import HumanMessage, SystemMessage"
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -252,7 +252,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.agent import AgentFinish\n",
|
||||
"from langchain_core.agents import AgentFinish\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def execute_agent(agent, tools, input):\n",
|
||||
@ -457,8 +457,8 @@
|
||||
"\n",
|
||||
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetCurrentWeather(BaseModel):\n",
|
||||
|
@ -29,11 +29,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents.tools import Tool\n",
|
||||
"from langchain.chains import LLMMathChain\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
|
||||
"from langchain_core.tools import Tool\n",
|
||||
"from langchain_experimental.plan_and_execute import (\n",
|
||||
" PlanAndExecute,\n",
|
||||
" load_agent_executor,\n",
|
||||
|
@ -87,7 +87,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -268,8 +268,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"db = SQLDatabase.from_uri(\n",
|
||||
" CONNECTION_STRING\n",
|
||||
@ -324,7 +324,7 @@
|
||||
"source": [
|
||||
"import re\n",
|
||||
"\n",
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def replace_brackets(match):\n",
|
||||
|
@ -33,9 +33,9 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.utilities import DuckDuckGoSearchAPIWrapper"
|
||||
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -19,8 +19,8 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.prompt import PromptValue"
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.prompt_values import PromptValue"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -25,8 +25,8 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableLambda"
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -21,7 +21,7 @@
|
||||
"from langchain.prompts import (\n",
|
||||
" ChatPromptTemplate,\n",
|
||||
")\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_experimental.utilities import PythonREPL"
|
||||
]
|
||||
},
|
||||
|
@ -22,9 +22,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain.utils.math import cosine_similarity\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"physics_template = \"\"\"You are a very smart physics professor. \\\n",
|
||||
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n",
|
||||
|
@ -22,7 +22,7 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
|
@ -69,7 +69,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"prompt1 = ChatPromptTemplate.from_template(\n",
|
||||
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",
|
||||
|
@ -191,7 +191,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"chain = prompt | model | StrOutputParser()"
|
||||
]
|
||||
@ -327,7 +327,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"map_ = RunnableParallel(foo=RunnablePassthrough())\n",
|
||||
"chain = (\n",
|
||||
|
@ -41,9 +41,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import FAISS"
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -171,9 +171,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import format_document\n",
|
||||
"from langchain.schema.messages import get_buffer_string\n",
|
||||
"from langchain.schema.runnable import RunnableParallel\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage"
|
||||
"from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string\n",
|
||||
"from langchain_core.runnables import RunnableParallel"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -94,8 +94,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"\n",
|
||||
|
@ -29,8 +29,8 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.tools import DuckDuckGoSearchRun"
|
||||
"from langchain.tools import DuckDuckGoSearchRun\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -49,7 +49,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
@ -326,9 +326,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import DocArrayInMemorySearch\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"vectorstore = DocArrayInMemorySearch.from_texts(\n",
|
||||
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",
|
||||
|
@ -22,7 +22,7 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough"
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -43,7 +43,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.runnable import ConfigurableField\n",
|
||||
"from langchain_core.runnables import ConfigurableField\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI(temperature=0).configurable_fields(\n",
|
||||
" temperature=ConfigurableField(\n",
|
||||
@ -265,7 +265,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.runnable import ConfigurableField"
|
||||
"from langchain_core.runnables import ConfigurableField"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -216,7 +216,7 @@
|
||||
"source": [
|
||||
"# First let's create a chain with a ChatModel\n",
|
||||
"# We add in a string output parser here so the outputs between the two are the same type\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"chat_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
|
@ -34,7 +34,7 @@
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def length_function(text):\n",
|
||||
@ -103,8 +103,8 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableConfig"
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableConfig"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -34,7 +34,7 @@
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts.chat import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\n",
|
||||
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",
|
||||
|
@ -47,9 +47,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"vectorstore = FAISS.from_texts(\n",
|
||||
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
|
||||
@ -131,9 +131,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"vectorstore = FAISS.from_texts(\n",
|
||||
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
|
||||
@ -194,7 +194,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.runnable import RunnableParallel\n",
|
||||
"from langchain_core.runnables import RunnableParallel\n",
|
||||
"\n",
|
||||
"model = ChatOpenAI()\n",
|
||||
"joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
|
||||
|
@ -132,8 +132,8 @@
|
||||
"from langchain.chat_models import ChatAnthropic\n",
|
||||
"from langchain.memory.chat_message_histories import RedisChatMessageHistory\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain.schema.chat_history import BaseChatMessageHistory\n",
|
||||
"from langchain.schema.runnable.history import RunnableWithMessageHistory"
|
||||
"from langchain_core.chat_history import BaseChatMessageHistory\n",
|
||||
"from langchain_core.runnables.history import RunnableWithMessageHistory"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -292,8 +292,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.messages import HumanMessage\n",
|
||||
"from langchain.schema.runnable import RunnableParallel\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from langchain_core.runnables import RunnableParallel\n",
|
||||
"\n",
|
||||
"chain = RunnableParallel({\"output_message\": ChatAnthropic(model=\"claude-2\")})\n",
|
||||
"chain_with_history = RunnableWithMessageHistory(\n",
|
||||
|
@ -46,7 +46,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
|
||||
"\n",
|
||||
"runnable = RunnableParallel(\n",
|
||||
" passed=RunnablePassthrough(),\n",
|
||||
@ -100,9 +100,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"vectorstore = FAISS.from_texts(\n",
|
||||
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
|
||||
|
@ -53,7 +53,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatAnthropic\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -164,7 +164,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnableBranch\n",
|
||||
"from langchain_core.runnables import RunnableBranch\n",
|
||||
"\n",
|
||||
"branch = RunnableBranch(\n",
|
||||
" (lambda x: \"anthropic\" in x[\"topic\"].lower(), anthropic_chain),\n",
|
||||
@ -279,7 +279,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnableLambda\n",
|
||||
"from langchain_core.runnables import RunnableLambda\n",
|
||||
"\n",
|
||||
"full_chain = {\"topic\": chain, \"question\": lambda x: x[\"question\"]} | RunnableLambda(\n",
|
||||
" route\n",
|
||||
|
@ -660,9 +660,9 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.vectorstores import FAISS\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"{context}\n",
|
||||
@ -920,7 +920,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnableParallel\n",
|
||||
"from langchain_core.runnables import RunnableParallel\n",
|
||||
"\n",
|
||||
"chain1 = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
|
||||
"chain2 = (\n",
|
||||
|
@ -44,7 +44,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n",
|
||||
|
@ -181,7 +181,7 @@
|
||||
"source": [
|
||||
"# First let's create a chain with a ChatModel\n",
|
||||
"# We add in a string output parser here so the outputs between the two are the same type\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"chat_prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
|
@ -666,8 +666,8 @@
|
||||
"\n",
|
||||
"from langchain.chat_models.openai import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import (\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import (\n",
|
||||
" RunnableLambda,\n",
|
||||
" RunnableParallel,\n",
|
||||
" RunnablePassthrough,\n",
|
||||
|
@ -73,7 +73,7 @@ CustomTool(
|
||||
**YES**
|
||||
|
||||
```python
|
||||
from langchain.tools.base import Tool
|
||||
from langchain_core.tools import Tool
|
||||
from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace
|
||||
|
||||
class CalculatorInput(BaseModel):
|
||||
@ -90,7 +90,7 @@ Tool.from_function( # <-- tool uses v1 namespace
|
||||
**NO**
|
||||
|
||||
```python
|
||||
from langchain.tools.base import Tool
|
||||
from langchain_core.tools import Tool
|
||||
from pydantic import BaseModel, Field # <-- Uses v2 namespace
|
||||
|
||||
class CalculatorInput(BaseModel):
|
||||
|
@ -71,7 +71,7 @@
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import QianfanChatEndpoint\n",
|
||||
"from langchain.chat_models.base import HumanMessage\n",
|
||||
"from langchain_core.language_models.chat_models import HumanMessage\n",
|
||||
"\n",
|
||||
"os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n",
|
||||
"os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n",
|
||||
|
@ -159,7 +159,7 @@
|
||||
"from langchain.chat_models import ChatFireworks\n",
|
||||
"from langchain.memory import ConversationBufferMemory\n",
|
||||
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"llm = ChatFireworks(\n",
|
||||
" model=\"accounts/fireworks/models/llama-v2-13b-chat\",\n",
|
||||
|
@ -41,7 +41,7 @@
|
||||
"import os\n",
|
||||
"\n",
|
||||
"from langchain.chat_models import PaiEasChatEndpoint\n",
|
||||
"from langchain.chat_models.base import HumanMessage\n",
|
||||
"from langchain_core.language_models.chat_models import HumanMessage\n",
|
||||
"\n",
|
||||
"os.environ[\"EAS_SERVICE_URL\"] = \"Your_EAS_Service_URL\"\n",
|
||||
"os.environ[\"EAS_SERVICE_TOKEN\"] = \"Your_EAS_Service_Token\"\n",
|
||||
|
@ -516,7 +516,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
|
@ -360,7 +360,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
|
@ -72,7 +72,7 @@
|
||||
"source": [
|
||||
"from enum import Enum\n",
|
||||
"\n",
|
||||
"from langchain.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Operation(Enum):\n",
|
||||
@ -135,8 +135,8 @@
|
||||
"source": [
|
||||
"from pprint import pprint\n",
|
||||
"\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"\n",
|
||||
"openai_function_def = convert_pydantic_to_openai_function(Calculator)\n",
|
||||
"pprint(openai_function_def)"
|
||||
|
@ -472,7 +472,7 @@
|
||||
"from typing import Dict, List\n",
|
||||
"\n",
|
||||
"from langchain.document_loaders import DocugamiLoader\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n",
|
||||
"loader.include_xml_tags = (\n",
|
||||
|
@ -74,7 +74,7 @@
|
||||
"import asyncio\n",
|
||||
"\n",
|
||||
"from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain_core.documents import Document\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"async def process():\n",
|
||||
|
@ -80,7 +80,7 @@
|
||||
],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatDatabricks\n",
|
||||
"from langchain.schema.messages import HumanMessage\n",
|
||||
"from langchain_core.messages import HumanMessage\n",
|
||||
"from mlflow.deployments import get_deploy_client\n",
|
||||
"\n",
|
||||
"client = get_deploy_client(\"databricks\")\n",
|
||||
|
@ -174,8 +174,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import langchain.utilities.opaqueprompts as op\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"prompt = (PromptTemplate.from_template(prompt_template),)\n",
|
||||
"llm = OpenAI()\n",
|
||||
|
@ -40,7 +40,7 @@
|
||||
"source": [
|
||||
"from langchain.llms import VolcEngineMaasLLM\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -31,7 +31,7 @@ Databricks External Models
|
||||
|
||||
```python
|
||||
from langchain.chat_models import ChatDatabricks
|
||||
from langchain.schema.messages import HumanMessage
|
||||
from langchain_core.messages import HumanMessage
|
||||
from mlflow.deployments import get_deploy_client
|
||||
|
||||
|
||||
|
@ -21,7 +21,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatCohere\n",
|
||||
"from langchain.retrievers import CohereRagRetriever\n",
|
||||
"from langchain.schema.document import Document"
|
||||
"from langchain_core.documents import Document"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
File diff suppressed because one or more lines are too long
@ -65,9 +65,9 @@
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter"
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -563,8 +563,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"rag_chain = (\n",
|
||||
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n",
|
||||
|
@ -193,7 +193,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.agent import AgentFinish\n",
|
||||
"from langchain_core.agents import AgentFinish\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def execute_agent(agent, tools, input):\n",
|
||||
|
@ -23,9 +23,9 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.agents import AgentType, initialize_agent\n",
|
||||
"from langchain.agents.tools import Tool\n",
|
||||
"from langchain.chains import LLMMathChain\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain_core.tools import Tool\n",
|
||||
"from pydantic.v1 import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
|
@ -166,7 +166,7 @@
|
||||
"source": [
|
||||
"import json\n",
|
||||
"\n",
|
||||
"from langchain.schema.agent import AgentActionMessageLog, AgentFinish"
|
||||
"from langchain_core.agents import AgentActionMessageLog, AgentFinish"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -357,7 +357,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.agent import AgentFinish\n",
|
||||
"from langchain_core.agents import AgentFinish\n",
|
||||
"\n",
|
||||
"user_input = \"how many letters in the word educa?\"\n",
|
||||
"intermediate_steps = []\n",
|
||||
@ -519,7 +519,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.messages import AIMessage, HumanMessage\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage\n",
|
||||
"\n",
|
||||
"chat_history = []"
|
||||
]
|
||||
|
@ -938,8 +938,8 @@
|
||||
"from langchain.agents import AgentType, initialize_agent\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.tools import Tool\n",
|
||||
"from langchain.tools.base import ToolException\n",
|
||||
"from langchain.utilities import SerpAPIWrapper\n",
|
||||
"from langchain_core.tools import ToolException\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def _handle_error(error: ToolException) -> str:\n",
|
||||
|
@ -35,8 +35,8 @@
|
||||
"from langchain.chat_models import ChatAnthropic\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.prompt_template import format_document\n",
|
||||
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough"
|
||||
"from langchain_core.prompts import format_document\n",
|
||||
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -32,9 +32,9 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain.schema.prompt_template import format_document\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function"
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
|
||||
"from langchain_core.prompts import format_document\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -51,7 +51,7 @@
|
||||
"from langchain.chat_models import ChatAnthropic\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.prompt_template import format_document"
|
||||
"from langchain_core.prompts import format_document"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -43,7 +43,7 @@
|
||||
"from langchain.chat_models import ChatAnthropic\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.prompt_template import format_document"
|
||||
"from langchain_core.prompts import format_document"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -58,8 +58,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnableBranch"
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnableBranch"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -89,8 +89,8 @@
|
||||
"from typing import Literal\n",
|
||||
"\n",
|
||||
"from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class TopicClassifier(BaseModel):\n",
|
||||
@ -119,8 +119,8 @@
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"final_chain = (\n",
|
||||
" RunnablePassthrough.assign(topic=itemgetter(\"input\") | classifier_chain)\n",
|
||||
|
@ -107,7 +107,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"synopsis_chain = synopsis_prompt | llm | StrOutputParser()\n",
|
||||
"review_chain = review_prompt | llm | StrOutputParser()\n",
|
||||
|
@ -29,7 +29,7 @@
|
||||
")\n",
|
||||
"from langchain.chains.base import Chain\n",
|
||||
"from langchain.prompts.base import BasePromptTemplate\n",
|
||||
"from langchain.schema.language_model import BaseLanguageModel\n",
|
||||
"from langchain_core.language_models import BaseLanguageModel\n",
|
||||
"from pydantic import Extra\n",
|
||||
"\n",
|
||||
"\n",
|
||||
|
@ -56,7 +56,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.pydantic_v1 import BaseModel, Field\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class Person(BaseModel):\n",
|
||||
|
@ -118,7 +118,7 @@
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"template = \"\"\"Answer the question based only on the following context:\n",
|
||||
"\n",
|
||||
|
@ -232,8 +232,8 @@
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import ChatPromptTemplate\n",
|
||||
"from langchain.schema.document import Document\n",
|
||||
"from langchain.schema.output_parser import StrOutputParser"
|
||||
"from langchain_core.documents import Document\n",
|
||||
"from langchain_core.output_parsers import StrOutputParser"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -104,7 +104,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema.messages import HumanMessage, SystemMessage\n",
|
||||
"from langchain_core.messages import HumanMessage, SystemMessage\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" SystemMessage(content=\"You're a helpful assistant\"),\n",
|
||||
|
@ -30,7 +30,7 @@
|
||||
"from typing import Any, List, Mapping, Optional\n",
|
||||
"\n",
|
||||
"from langchain.callbacks.manager import CallbackManagerForLLMRun\n",
|
||||
"from langchain.llms.base import LLM"
|
||||
"from langchain_core.language_models.llms import LLM"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -53,7 +53,7 @@
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.output_parsers import PydanticOutputParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.pydantic_v1 import BaseModel, Field, validator\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field, validator\n",
|
||||
"\n",
|
||||
"model = OpenAI(model_name=\"text-davinci-003\", temperature=0.0)\n",
|
||||
"\n",
|
||||
|
@ -9,7 +9,7 @@ For this example, we'll use the above Pydantic output parser. Here's what happen
|
||||
```python
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from typing import List
|
||||
```
|
||||
|
||||
|
@ -25,7 +25,7 @@
|
||||
"from langchain.llms import OpenAI\n",
|
||||
"from langchain.output_parsers import PydanticOutputParser\n",
|
||||
"from langchain.prompts import PromptTemplate\n",
|
||||
"from langchain.pydantic_v1 import BaseModel, Field, validator"
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field, validator"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -203,7 +203,7 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import HumanMessagePromptTemplate\n",
|
||||
"from langchain.schema.messages import SystemMessage\n",
|
||||
"from langchain_core.messages import SystemMessage\n",
|
||||
"\n",
|
||||
"chat_template = ChatPromptTemplate.from_messages(\n",
|
||||
" [\n",
|
||||
|
@ -38,7 +38,7 @@ chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_nam
|
||||
|
||||
|
||||
```python
|
||||
from langchain.schema.messages import HumanMessage, AIMessage
|
||||
from langchain_core.messages import HumanMessage, AIMessage
|
||||
|
||||
human_message = HumanMessage(content="What is the best way to learn programming?")
|
||||
ai_message = AIMessage(content="""\
|
||||
|
@ -66,7 +66,7 @@
|
||||
"\n",
|
||||
"from langchain.chat_models import ChatOpenAI\n",
|
||||
"from langchain.prompts import FewShotPromptTemplate, PromptTemplate\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_experimental.tabular_synthetic_data.openai import (\n",
|
||||
" OPENAI_TEMPLATE,\n",
|
||||
" create_openai_data_generator,\n",
|
||||
|
@ -382,7 +382,7 @@
|
||||
"from typing import Optional\n",
|
||||
"\n",
|
||||
"from langchain.chains import create_extraction_chain_pydantic\n",
|
||||
"from langchain.pydantic_v1 import BaseModel\n",
|
||||
"from langchain_core.pydantic_v1 import BaseModel\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Pydantic data class\n",
|
||||
|
@ -250,7 +250,7 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'To initialize a ReAct agent, you need to follow these steps:\\n\\n1. Initialize a language model `llm` of type `BaseLanguageModel`.\\n\\n2. Initialize a document store `docstore` of type `Docstore`.\\n\\n3. Create a `DocstoreExplorer` with the initialized `docstore`. The `DocstoreExplorer` is used to search for and look up terms in the document store.\\n\\n4. Create an array of `Tool` objects. The `Tool` objects represent the actions that the agent can perform. In the case of `ReActDocstoreAgent`, the tools must be \"Search\" and \"Lookup\" with their corresponding functions from the `DocstoreExplorer`.\\n\\n5. Initialize the `ReActDocstoreAgent` using the `from_llm_and_tools` method with the `llm` (language model) and `tools` as parameters.\\n\\n6. Initialize the `ReActChain` (which is the `AgentExecutor`) using the `ReActDocstoreAgent` and `tools` as parameters.\\n\\nHere is an example of how to do this:\\n\\n```python\\nfrom langchain.chains import ReActChain, OpenAI\\nfrom langchain.docstore.base import Docstore\\nfrom langchain.docstore.document import Document\\nfrom langchain.tools.base import BaseTool\\n\\n# Initialize the LLM and a docstore\\nllm = OpenAI()\\ndocstore = Docstore()\\n\\ndocstore_explorer = DocstoreExplorer(docstore)\\ntools = [\\n Tool(\\n name=\"Search\",\\n func=docstore_explorer.search,\\n description=\"Search for a term in the docstore.\",\\n ),\\n Tool(\\n name=\"Lookup\",\\n func=docstore_explorer.lookup,\\n description=\"Lookup a term in the docstore.\",\\n ),\\n]\\nagent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)\\nreact = ReActChain(agent=agent, tools=tools)\\n```\\n\\nKeep in mind that this is a simplified example and you might need to adapt it to your specific needs.'"
|
||||
"'To initialize a ReAct agent, you need to follow these steps:\\n\\n1. Initialize a language model `llm` of type `BaseLanguageModel`.\\n\\n2. Initialize a document store `docstore` of type `Docstore`.\\n\\n3. Create a `DocstoreExplorer` with the initialized `docstore`. The `DocstoreExplorer` is used to search for and look up terms in the document store.\\n\\n4. Create an array of `Tool` objects. The `Tool` objects represent the actions that the agent can perform. In the case of `ReActDocstoreAgent`, the tools must be \"Search\" and \"Lookup\" with their corresponding functions from the `DocstoreExplorer`.\\n\\n5. Initialize the `ReActDocstoreAgent` using the `from_llm_and_tools` method with the `llm` (language model) and `tools` as parameters.\\n\\n6. Initialize the `ReActChain` (which is the `AgentExecutor`) using the `ReActDocstoreAgent` and `tools` as parameters.\\n\\nHere is an example of how to do this:\\n\\n```python\\nfrom langchain.chains import ReActChain, OpenAI\\nfrom langchain.docstore.base import Docstore\\nfrom langchain.docstore.document import Document\\nfrom langchain_core.tools import BaseTool\\n\\n# Initialize the LLM and a docstore\\nllm = OpenAI()\\ndocstore = Docstore()\\n\\ndocstore_explorer = DocstoreExplorer(docstore)\\ntools = [\\n Tool(\\n name=\"Search\",\\n func=docstore_explorer.search,\\n description=\"Search for a term in the docstore.\",\\n ),\\n Tool(\\n name=\"Lookup\",\\n func=docstore_explorer.lookup,\\n description=\"Lookup a term in the docstore.\",\\n ),\\n]\\nagent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)\\nreact = ReActChain(agent=agent, tools=tools)\\n```\\n\\nKeep in mind that this is a simplified example and you might need to adapt it to your specific needs.'"
|
||||
]
|
||||
},
|
||||
"execution_count": 43,
|
||||
|
@ -429,7 +429,7 @@
|
||||
"source": [
|
||||
"from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent\n",
|
||||
"from langchain.prompts import MessagesPlaceholder\n",
|
||||
"from langchain.schema.messages import SystemMessage"
|
||||
"from langchain_core.messages import SystemMessage"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -162,9 +162,9 @@
|
||||
"from langchain.document_loaders import WebBaseLoader\n",
|
||||
"from langchain.embeddings import OpenAIEmbeddings\n",
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
|
||||
"from langchain.vectorstores import Chroma"
|
||||
"from langchain.vectorstores import Chroma\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough"
|
||||
]
|
||||
},
|
||||
{
|
||||
@ -687,7 +687,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import StrOutputParser\n",
|
||||
"from langchain.schema.runnable import RunnablePassthrough\n",
|
||||
"from langchain_core.runnables import RunnablePassthrough\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def format_docs(docs):\n",
|
||||
@ -855,7 +855,7 @@
|
||||
"source": [
|
||||
"from operator import itemgetter\n",
|
||||
"\n",
|
||||
"from langchain.schema.runnable import RunnableParallel\n",
|
||||
"from langchain_core.runnables import RunnableParallel\n",
|
||||
"\n",
|
||||
"rag_chain_from_docs = (\n",
|
||||
" {\n",
|
||||
@ -943,7 +943,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from langchain.schema.messages import AIMessage, HumanMessage\n",
|
||||
"from langchain_core.messages import AIMessage, HumanMessage\n",
|
||||
"\n",
|
||||
"condense_q_chain.invoke(\n",
|
||||
" {\n",
|
||||
|
@ -323,7 +323,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.pydantic_v1 import BaseModel, Field"
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -2,8 +2,8 @@ import os
|
||||
from pathlib import Path
|
||||
|
||||
from langchain import chat_models, llms
|
||||
from langchain.chat_models.base import BaseChatModel, SimpleChatModel
|
||||
from langchain.llms.base import LLM, BaseLLM
|
||||
from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel
|
||||
from langchain_core.language_models.llms import LLM, BaseLLM
|
||||
|
||||
INTEGRATIONS_DIR = Path(os.path.abspath(__file__)).parents[1] / "docs" / "integrations"
|
||||
LLM_IGNORE = ("FakeListLLM", "OpenAIChat", "PromptLayerOpenAIChat")
|
||||
|
@ -1,8 +1,8 @@
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import ConfigurableField
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import ConfigurableField
|
||||
|
||||
from .prompts import answer_prompt
|
||||
from .retriever_agent import executor
|
||||
|
@ -1,6 +1,6 @@
|
||||
import re
|
||||
|
||||
from langchain.schema.agent import AgentAction, AgentFinish
|
||||
from langchain_core.agents import AgentAction, AgentFinish
|
||||
|
||||
from .agent_scratchpad import _format_docs
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
from langchain.agents import AgentExecutor
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
|
||||
from .agent_scratchpad import format_agent_scratchpad
|
||||
from .output_parser import parse_output
|
||||
|
@ -7,8 +7,8 @@ from typing import Any, Dict, Sequence
|
||||
from langchain.chains.openai_functions import convert_to_openai_function
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel, Field, ValidationError, conint
|
||||
from langchain.schema.runnable import (
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, ValidationError, conint
|
||||
from langchain_core.runnables import (
|
||||
Runnable,
|
||||
RunnableBranch,
|
||||
RunnableLambda,
|
||||
|
@ -4,9 +4,9 @@ import cassio
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnablePassthrough
|
||||
from langchain.vectorstores import Cassandra
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.runnables import RunnablePassthrough
|
||||
|
||||
from .populate_vector_store import populate
|
||||
|
||||
|
@ -6,7 +6,7 @@ from langchain.cache import CassandraCache
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.schema import BaseMessage
|
||||
from langchain.schema.runnable import RunnableLambda
|
||||
from langchain_core.runnables import RunnableLambda
|
||||
|
||||
use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
|
||||
if use_cassandra:
|
||||
|
@ -1,9 +1,9 @@
|
||||
from langchain import hub
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
|
||||
from langchain.utilities import WikipediaAPIWrapper
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
|
||||
|
||||
|
||||
class Question(BaseModel):
|
||||
|
@ -15,7 +15,7 @@ from langchain.schema import (
|
||||
StrOutputParser,
|
||||
get_buffer_string,
|
||||
)
|
||||
from langchain.schema.runnable import Runnable
|
||||
from langchain_core.runnables import Runnable
|
||||
from langsmith.evaluation import EvaluationResult, RunEvaluator
|
||||
from langsmith.schemas import Example
|
||||
from pydantic import BaseModel, Field
|
||||
|
@ -5,9 +5,9 @@ from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.tools.retriever import create_retriever_tool
|
||||
from langchain.vectorstores import FAISS
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field
|
||||
from langchain_experimental.tools import PythonAstREPLTool
|
||||
|
||||
MAIN_DIR = Path(__file__).parents[1]
|
||||
|
@ -1,7 +1,7 @@
|
||||
from elasticsearch import Elasticsearch
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.output_parsers.json import SimpleJsonOutputParser
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
from .elastic_index_info import get_indices_infos
|
||||
from .prompts import DSL_PROMPT
|
||||
|
@ -2,8 +2,8 @@ from typing import List, Optional
|
||||
|
||||
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
|
||||
|
||||
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.
|
||||
|
@ -3,8 +3,8 @@ from typing import List, Optional
|
||||
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.
|
||||
|
||||
|
@ -4,8 +4,8 @@ import weaviate
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
|
||||
# Check env vars
|
||||
if os.environ.get("WEAVIATE_API_KEY", None) is None:
|
||||
|
@ -1,10 +1,10 @@
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableParallel
|
||||
|
||||
from hyde.prompts import hyde_prompt
|
||||
|
||||
|
@ -3,11 +3,11 @@ import os
|
||||
from langchain.chat_models import ChatOpenAI
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.prompts import ChatPromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel
|
||||
from langchain.schema.document import Document
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.vectorstores import MongoDBAtlasVectorSearch
|
||||
from langchain_core.documents import Document
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
from pymongo import MongoClient
|
||||
|
||||
MONGO_URI = os.environ["MONGO_URI"]
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user