docs[patch], templates[patch]: Import from core (#14575)

Update imports to use core for the low-hanging fruit changes. Ran
following

```bash
git grep -l 'langchain.schema.runnable' {docs,templates,cookbook}  | xargs sed -i '' 's/langchain\.schema\.runnable/langchain_core.runnables/g'
git grep -l 'langchain.schema.output_parser' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.output_parser/langchain_core.output_parsers/g'
git grep -l 'langchain.schema.messages' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.messages/langchain_core.messages/g'
git grep -l 'langchain.schema.chat_histry' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.chat_history/langchain_core.chat_history/g'
git grep -l 'langchain.schema.prompt_template' {docs,templates,cookbook} | xargs sed -i '' 's/langchain\.schema\.prompt_template/langchain_core.prompts/g'
git grep -l 'from langchain.pydantic_v1' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.pydantic_v1/from langchain_core.pydantic_v1/g'
git grep -l 'from langchain.tools.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.tools\.base/from langchain_core.tools/g'
git grep -l 'from langchain.chat_models.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.chat_models.base/from langchain_core.language_models.chat_models/g'
git grep -l 'from langchain.llms.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.llms\.base\ /from langchain_core.language_models.llms\ /g'
git grep -l 'from langchain.embeddings.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.embeddings\.base/from langchain_core.embeddings/g'
git grep -l 'from langchain.vectorstores.base' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.vectorstores\.base/from langchain_core.vectorstores/g'
git grep -l 'from langchain.agents.tools' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.agents\.tools/from langchain_core.tools/g'
git grep -l 'from langchain.schema.output' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.output\ /from langchain_core.outputs\ /g'
git grep -l 'from langchain.schema.embeddings' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.embeddings/from langchain_core.embeddings/g'
git grep -l 'from langchain.schema.document' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.document/from langchain_core.documents/g'
git grep -l 'from langchain.schema.agent' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.agent/from langchain_core.agents/g'
git grep -l 'from langchain.schema.prompt ' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.prompt\ /from langchain_core.prompt_values /g'
git grep -l 'from langchain.schema.language_model' {docs,templates,cookbook} | xargs sed -i '' 's/from langchain\.schema\.language_model/from langchain_core.language_models/g'


```
This commit is contained in:
Bagatur 2023-12-11 16:49:10 -08:00 committed by GitHub
parent 0a9d933bb2
commit 9ffca3b92a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
163 changed files with 368 additions and 369 deletions

View File

@ -164,8 +164,8 @@
")\n", ")\n",
"\n", "\n",
"# Chain to query\n", "# Chain to query\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"sql_response = (\n", "sql_response = (\n",
" RunnablePassthrough.assign(schema=get_schema)\n", " RunnablePassthrough.assign(schema=get_schema)\n",
@ -293,7 +293,7 @@
"memory = ConversationBufferMemory(return_messages=True)\n", "memory = ConversationBufferMemory(return_messages=True)\n",
"\n", "\n",
"# Chain to query with memory\n", "# Chain to query with memory\n",
"from langchain.schema.runnable import RunnableLambda\n", "from langchain_core.runnables import RunnableLambda\n",
"\n", "\n",
"sql_chain = (\n", "sql_chain = (\n",
" RunnablePassthrough.assign(\n", " RunnablePassthrough.assign(\n",

View File

@ -200,7 +200,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"\n", "\n",
"# Generate summaries of text elements\n", "# Generate summaries of text elements\n",
@ -270,7 +270,7 @@
"import base64\n", "import base64\n",
"import os\n", "import os\n",
"\n", "\n",
"from langchain.schema.messages import HumanMessage\n", "from langchain_core.messages import HumanMessage\n",
"\n", "\n",
"\n", "\n",
"def encode_image(image_path):\n", "def encode_image(image_path):\n",
@ -355,9 +355,9 @@
"\n", "\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n", "from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"\n", "\n",
"def create_multi_vector_retriever(\n", "def create_multi_vector_retriever(\n",
@ -442,7 +442,7 @@
"import re\n", "import re\n",
"\n", "\n",
"from IPython.display import HTML, display\n", "from IPython.display import HTML, display\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n", "from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"from PIL import Image\n", "from PIL import Image\n",
"\n", "\n",
"\n", "\n",

View File

@ -237,7 +237,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {
@ -320,9 +320,9 @@
"\n", "\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n", "from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"# The vectorstore to use to index the child chunks\n", "# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n", "vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
@ -374,7 +374,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"# Prompt template\n", "# Prompt template\n",
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n", "template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",

View File

@ -213,7 +213,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {
@ -375,9 +375,9 @@
"\n", "\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n", "from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"# The vectorstore to use to index the child chunks\n", "# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n", "vectorstore = Chroma(collection_name=\"summaries\", embedding_function=OpenAIEmbeddings())\n",
@ -646,7 +646,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"# Prompt template\n", "# Prompt template\n",
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n", "template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",

View File

@ -211,7 +211,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOllama\n", "from langchain.chat_models import ChatOllama\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {
@ -378,9 +378,9 @@
"\n", "\n",
"from langchain.embeddings import GPT4AllEmbeddings\n", "from langchain.embeddings import GPT4AllEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores import Chroma\n", "from langchain.vectorstores import Chroma\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"# The vectorstore to use to index the child chunks\n", "# The vectorstore to use to index the child chunks\n",
"vectorstore = Chroma(\n", "vectorstore = Chroma(\n",
@ -532,7 +532,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"# Prompt template\n", "# Prompt template\n",
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n", "template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",

View File

@ -162,7 +162,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"# Prompt\n", "# Prompt\n",
"prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n", "prompt_text = \"\"\"You are an assistant tasked with summarizing tables and text for retrieval. \\\n",
@ -202,7 +202,7 @@
"import os\n", "import os\n",
"from io import BytesIO\n", "from io import BytesIO\n",
"\n", "\n",
"from langchain.schema.messages import HumanMessage\n", "from langchain_core.messages import HumanMessage\n",
"from PIL import Image\n", "from PIL import Image\n",
"\n", "\n",
"\n", "\n",
@ -273,8 +273,8 @@
"from base64 import b64decode\n", "from base64 import b64decode\n",
"\n", "\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"\n", "\n",
"def create_multi_vector_retriever(\n", "def create_multi_vector_retriever(\n",
@ -475,7 +475,7 @@
"source": [ "source": [
"from operator import itemgetter\n", "from operator import itemgetter\n",
"\n", "\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"# Prompt\n", "# Prompt\n",
"template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n", "template = \"\"\"Answer the question based only on the following context, which can include text and tables:\n",
@ -521,7 +521,7 @@
"import re\n", "import re\n",
"\n", "\n",
"from langchain.schema import Document\n", "from langchain.schema import Document\n",
"from langchain.schema.runnable import RunnableLambda\n", "from langchain_core.runnables import RunnableLambda\n",
"\n", "\n",
"\n", "\n",
"def looks_like_base64(sb):\n", "def looks_like_base64(sb):\n",

View File

@ -476,7 +476,7 @@
" HumanMessagePromptTemplate,\n", " HumanMessagePromptTemplate,\n",
" SystemMessagePromptTemplate,\n", " SystemMessagePromptTemplate,\n",
")\n", ")\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {
@ -547,9 +547,9 @@
"\n", "\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.retrievers.multi_vector import MultiVectorRetriever\n", "from langchain.retrievers.multi_vector import MultiVectorRetriever\n",
"from langchain.schema.document import Document\n",
"from langchain.storage import InMemoryStore\n", "from langchain.storage import InMemoryStore\n",
"from langchain.vectorstores.chroma import Chroma\n", "from langchain.vectorstores.chroma import Chroma\n",
"from langchain_core.documents import Document\n",
"\n", "\n",
"\n", "\n",
"def build_retriever(text_elements, tables, table_summaries):\n", "def build_retriever(text_elements, tables, table_summaries):\n",
@ -605,7 +605,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"system_prompt = SystemMessagePromptTemplate.from_template(\n", "system_prompt = SystemMessagePromptTemplate.from_template(\n",
" \"You are a helpful assistant that answers questions based on provided context. Your provided context can include text or tables, \"\n", " \"You are a helpful assistant that answers questions based on provided context. Your provided context can include text or tables, \"\n",

View File

@ -23,7 +23,7 @@
"\n", "\n",
"from langchain.chains.openai_tools import create_extraction_chain_pydantic\n", "from langchain.chains.openai_tools import create_extraction_chain_pydantic\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.pydantic_v1 import BaseModel" "from langchain_core.pydantic_v1 import BaseModel"
] ]
}, },
{ {
@ -151,11 +151,11 @@
"\n", "\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n", "from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n", "from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain.schema.runnable import Runnable\n", "from langchain_core.runnables import Runnable\n",
"from langchain.pydantic_v1 import BaseModel\n", "from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.messages import SystemMessage\n", "from langchain_core.messages import SystemMessage\n",
"from langchain.schema.language_model import BaseLanguageModel\n", "from langchain_core.language_models import BaseLanguageModel\n",
"\n", "\n",
"_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n", "_EXTRACTION_TEMPLATE = \"\"\"Extract and save the relevant entities mentioned \\\n",
"in the following passage together with their properties.\n", "in the following passage together with their properties.\n",

View File

@ -92,7 +92,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage" "from langchain_core.messages import HumanMessage, SystemMessage"
] ]
}, },
{ {

View File

@ -316,9 +316,9 @@
"from operator import itemgetter\n", "from operator import itemgetter\n",
"\n", "\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage\n", "from langchain_core.messages import HumanMessage, SystemMessage\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n", "from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"\n", "\n",
"\n", "\n",
"def prompt_func(data_dict):\n", "def prompt_func(data_dict):\n",

View File

@ -29,7 +29,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.messages import HumanMessage, SystemMessage" "from langchain_core.messages import HumanMessage, SystemMessage"
] ]
}, },
{ {
@ -252,7 +252,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.agent import AgentFinish\n", "from langchain_core.agents import AgentFinish\n",
"\n", "\n",
"\n", "\n",
"def execute_agent(agent, tools, input):\n", "def execute_agent(agent, tools, input):\n",
@ -457,8 +457,8 @@
"\n", "\n",
"from langchain.output_parsers.openai_tools import PydanticToolsParser\n", "from langchain.output_parsers.openai_tools import PydanticToolsParser\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n", "from langchain.utils.openai_functions import convert_pydantic_to_openai_tool\n",
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n", "\n",
"\n", "\n",
"class GetCurrentWeather(BaseModel):\n", "class GetCurrentWeather(BaseModel):\n",

View File

@ -29,11 +29,11 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.agents.tools import Tool\n",
"from langchain.chains import LLMMathChain\n", "from langchain.chains import LLMMathChain\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.llms import OpenAI\n", "from langchain.llms import OpenAI\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper\n", "from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain_core.tools import Tool\n",
"from langchain_experimental.plan_and_execute import (\n", "from langchain_experimental.plan_and_execute import (\n",
" PlanAndExecute,\n", " PlanAndExecute,\n",
" load_agent_executor,\n", " load_agent_executor,\n",

View File

@ -87,7 +87,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {

View File

@ -268,8 +268,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"db = SQLDatabase.from_uri(\n", "db = SQLDatabase.from_uri(\n",
" CONNECTION_STRING\n", " CONNECTION_STRING\n",
@ -324,7 +324,7 @@
"source": [ "source": [
"import re\n", "import re\n",
"\n", "\n",
"from langchain.schema.runnable import RunnableLambda\n", "from langchain_core.runnables import RunnableLambda\n",
"\n", "\n",
"\n", "\n",
"def replace_brackets(match):\n", "def replace_brackets(match):\n",

View File

@ -33,9 +33,9 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain.utilities import DuckDuckGoSearchAPIWrapper\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.utilities import DuckDuckGoSearchAPIWrapper" "from langchain_core.runnables import RunnablePassthrough"
] ]
}, },
{ {

View File

@ -19,8 +19,8 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.prompt import PromptValue" "from langchain_core.prompt_values import PromptValue"
] ]
}, },
{ {

View File

@ -25,8 +25,8 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n", "from langchain.prompts import ChatPromptTemplate, FewShotChatMessagePromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnableLambda" "from langchain_core.runnables import RunnableLambda"
] ]
}, },
{ {

View File

@ -21,7 +21,7 @@
"from langchain.prompts import (\n", "from langchain.prompts import (\n",
" ChatPromptTemplate,\n", " ChatPromptTemplate,\n",
")\n", ")\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_experimental.utilities import PythonREPL" "from langchain_experimental.utilities import PythonREPL"
] ]
}, },

View File

@ -22,9 +22,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n",
"from langchain.utils.math import cosine_similarity\n", "from langchain.utils.math import cosine_similarity\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"\n", "\n",
"physics_template = \"\"\"You are a very smart physics professor. \\\n", "physics_template = \"\"\"You are a very smart physics professor. \\\n",
"You are great at answering questions about physics in a concise and easy to understand manner. \\\n", "You are great at answering questions about physics in a concise and easy to understand manner. \\\n",

View File

@ -22,7 +22,7 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.memory import ConversationBufferMemory\n", "from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n", "from langchain_core.runnables import RunnableLambda, RunnablePassthrough\n",
"\n", "\n",
"model = ChatOpenAI()\n", "model = ChatOpenAI()\n",
"prompt = ChatPromptTemplate.from_messages(\n", "prompt = ChatPromptTemplate.from_messages(\n",

View File

@ -69,7 +69,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"prompt1 = ChatPromptTemplate.from_template(\n", "prompt1 = ChatPromptTemplate.from_template(\n",
" \"generate a {attribute} color. Return the name of the color and nothing else:\"\n", " \"generate a {attribute} color. Return the name of the color and nothing else:\"\n",

View File

@ -191,7 +191,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"chain = prompt | model | StrOutputParser()" "chain = prompt | model | StrOutputParser()"
] ]
@ -327,7 +327,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n", "from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n", "\n",
"map_ = RunnableParallel(foo=RunnablePassthrough())\n", "map_ = RunnableParallel(foo=RunnablePassthrough())\n",
"chain = (\n", "chain = (\n",

View File

@ -41,9 +41,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain.vectorstores import FAISS\n",
"from langchain.schema.runnable import RunnableLambda, RunnablePassthrough\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.vectorstores import FAISS" "from langchain_core.runnables import RunnableLambda, RunnablePassthrough"
] ]
}, },
{ {
@ -171,9 +171,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema import format_document\n", "from langchain.schema import format_document\n",
"from langchain.schema.messages import get_buffer_string\n", "from langchain_core.messages import AIMessage, HumanMessage, get_buffer_string\n",
"from langchain.schema.runnable import RunnableParallel\n", "from langchain_core.runnables import RunnableParallel"
"from langchain_core.messages import AIMessage, HumanMessage"
] ]
}, },
{ {

View File

@ -94,8 +94,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"model = ChatOpenAI()\n", "model = ChatOpenAI()\n",
"\n", "\n",

View File

@ -29,8 +29,8 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain.tools import DuckDuckGoSearchRun\n",
"from langchain.tools import DuckDuckGoSearchRun" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {

View File

@ -49,7 +49,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n", "prompt = ChatPromptTemplate.from_template(\"tell me a short joke about {topic}\")\n",
"model = ChatOpenAI()\n", "model = ChatOpenAI()\n",
@ -326,9 +326,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n",
"from langchain.vectorstores import DocArrayInMemorySearch\n", "from langchain.vectorstores import DocArrayInMemorySearch\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n", "\n",
"vectorstore = DocArrayInMemorySearch.from_texts(\n", "vectorstore = DocArrayInMemorySearch.from_texts(\n",
" [\"harrison worked at kensho\", \"bears like to eat honey\"],\n", " [\"harrison worked at kensho\", \"bears like to eat honey\"],\n",

View File

@ -22,7 +22,7 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough" "from langchain_core.runnables import RunnablePassthrough"
] ]
}, },
{ {

View File

@ -43,7 +43,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.runnable import ConfigurableField\n", "from langchain_core.runnables import ConfigurableField\n",
"\n", "\n",
"model = ChatOpenAI(temperature=0).configurable_fields(\n", "model = ChatOpenAI(temperature=0).configurable_fields(\n",
" temperature=ConfigurableField(\n", " temperature=ConfigurableField(\n",
@ -265,7 +265,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatAnthropic, ChatOpenAI\n", "from langchain.chat_models import ChatAnthropic, ChatOpenAI\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.runnable import ConfigurableField" "from langchain_core.runnables import ConfigurableField"
] ]
}, },
{ {

View File

@ -216,7 +216,7 @@
"source": [ "source": [
"# First let's create a chain with a ChatModel\n", "# First let's create a chain with a ChatModel\n",
"# We add in a string output parser here so the outputs between the two are the same type\n", "# We add in a string output parser here so the outputs between the two are the same type\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"chat_prompt = ChatPromptTemplate.from_messages(\n", "chat_prompt = ChatPromptTemplate.from_messages(\n",
" [\n", " [\n",

View File

@ -34,7 +34,7 @@
"\n", "\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.runnable import RunnableLambda\n", "from langchain_core.runnables import RunnableLambda\n",
"\n", "\n",
"\n", "\n",
"def length_function(text):\n", "def length_function(text):\n",
@ -103,8 +103,8 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnableConfig" "from langchain_core.runnables import RunnableConfig"
] ]
}, },
{ {

View File

@ -34,7 +34,7 @@
"\n", "\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts.chat import ChatPromptTemplate\n", "from langchain.prompts.chat import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"prompt = ChatPromptTemplate.from_template(\n", "prompt = ChatPromptTemplate.from_template(\n",
" \"Write a comma-separated list of 5 animals similar to: {animal}\"\n", " \"Write a comma-separated list of 5 animals similar to: {animal}\"\n",

View File

@ -47,9 +47,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.vectorstores import FAISS\n", "from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"vectorstore = FAISS.from_texts(\n", "vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n", " [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
@ -131,9 +131,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.vectorstores import FAISS\n", "from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"vectorstore = FAISS.from_texts(\n", "vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n", " [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",
@ -194,7 +194,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.runnable import RunnableParallel\n", "from langchain_core.runnables import RunnableParallel\n",
"\n", "\n",
"model = ChatOpenAI()\n", "model = ChatOpenAI()\n",
"joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n", "joke_chain = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",

View File

@ -132,8 +132,8 @@
"from langchain.chat_models import ChatAnthropic\n", "from langchain.chat_models import ChatAnthropic\n",
"from langchain.memory.chat_message_histories import RedisChatMessageHistory\n", "from langchain.memory.chat_message_histories import RedisChatMessageHistory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.schema.chat_history import BaseChatMessageHistory\n", "from langchain_core.chat_history import BaseChatMessageHistory\n",
"from langchain.schema.runnable.history import RunnableWithMessageHistory" "from langchain_core.runnables.history import RunnableWithMessageHistory"
] ]
}, },
{ {
@ -292,8 +292,8 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.messages import HumanMessage\n", "from langchain_core.messages import HumanMessage\n",
"from langchain.schema.runnable import RunnableParallel\n", "from langchain_core.runnables import RunnableParallel\n",
"\n", "\n",
"chain = RunnableParallel({\"output_message\": ChatAnthropic(model=\"claude-2\")})\n", "chain = RunnableParallel({\"output_message\": ChatAnthropic(model=\"claude-2\")})\n",
"chain_with_history = RunnableWithMessageHistory(\n", "chain_with_history = RunnableWithMessageHistory(\n",

View File

@ -46,7 +46,7 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough\n", "from langchain_core.runnables import RunnableParallel, RunnablePassthrough\n",
"\n", "\n",
"runnable = RunnableParallel(\n", "runnable = RunnableParallel(\n",
" passed=RunnablePassthrough(),\n", " passed=RunnablePassthrough(),\n",
@ -100,9 +100,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.vectorstores import FAISS\n", "from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"vectorstore = FAISS.from_texts(\n", "vectorstore = FAISS.from_texts(\n",
" [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n", " [\"harrison worked at kensho\"], embedding=OpenAIEmbeddings()\n",

View File

@ -53,7 +53,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatAnthropic\n", "from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {
@ -164,7 +164,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnableBranch\n", "from langchain_core.runnables import RunnableBranch\n",
"\n", "\n",
"branch = RunnableBranch(\n", "branch = RunnableBranch(\n",
" (lambda x: \"anthropic\" in x[\"topic\"].lower(), anthropic_chain),\n", " (lambda x: \"anthropic\" in x[\"topic\"].lower(), anthropic_chain),\n",
@ -279,7 +279,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnableLambda\n", "from langchain_core.runnables import RunnableLambda\n",
"\n", "\n",
"full_chain = {\"topic\": chain, \"question\": lambda x: x[\"question\"]} | RunnableLambda(\n", "full_chain = {\"topic\": chain, \"question\": lambda x: x[\"question\"]} | RunnableLambda(\n",
" route\n", " route\n",

View File

@ -660,9 +660,9 @@
], ],
"source": [ "source": [
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema.output_parser import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.vectorstores import FAISS\n", "from langchain.vectorstores import FAISS\n",
"from langchain_core.output_parsers import StrOutputParser\n",
"from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"template = \"\"\"Answer the question based only on the following context:\n", "template = \"\"\"Answer the question based only on the following context:\n",
"{context}\n", "{context}\n",
@ -920,7 +920,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.runnable import RunnableParallel\n", "from langchain_core.runnables import RunnableParallel\n",
"\n", "\n",
"chain1 = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n", "chain1 = ChatPromptTemplate.from_template(\"tell me a joke about {topic}\") | model\n",
"chain2 = (\n", "chain2 = (\n",

View File

@ -44,7 +44,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"\n", "\n",
"prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n", "prompt = ChatPromptTemplate.from_template(\"Tell me a short joke about {topic}\")\n",

View File

@ -181,7 +181,7 @@
"source": [ "source": [
"# First let's create a chain with a ChatModel\n", "# First let's create a chain with a ChatModel\n",
"# We add in a string output parser here so the outputs between the two are the same type\n", "# We add in a string output parser here so the outputs between the two are the same type\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"chat_prompt = ChatPromptTemplate.from_messages(\n", "chat_prompt = ChatPromptTemplate.from_messages(\n",
" [\n", " [\n",

View File

@ -666,8 +666,8 @@
"\n", "\n",
"from langchain.chat_models.openai import ChatOpenAI\n", "from langchain.chat_models.openai import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import (\n", "from langchain_core.runnables import (\n",
" RunnableLambda,\n", " RunnableLambda,\n",
" RunnableParallel,\n", " RunnableParallel,\n",
" RunnablePassthrough,\n", " RunnablePassthrough,\n",

View File

@ -73,7 +73,7 @@ CustomTool(
**YES** **YES**
```python ```python
from langchain.tools.base import Tool from langchain_core.tools import Tool
from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace from pydantic.v1 import BaseModel, Field # <-- Uses v1 namespace
class CalculatorInput(BaseModel): class CalculatorInput(BaseModel):
@ -90,7 +90,7 @@ Tool.from_function( # <-- tool uses v1 namespace
**NO** **NO**
```python ```python
from langchain.tools.base import Tool from langchain_core.tools import Tool
from pydantic import BaseModel, Field # <-- Uses v2 namespace from pydantic import BaseModel, Field # <-- Uses v2 namespace
class CalculatorInput(BaseModel): class CalculatorInput(BaseModel):

View File

@ -71,7 +71,7 @@
"import os\n", "import os\n",
"\n", "\n",
"from langchain.chat_models import QianfanChatEndpoint\n", "from langchain.chat_models import QianfanChatEndpoint\n",
"from langchain.chat_models.base import HumanMessage\n", "from langchain_core.language_models.chat_models import HumanMessage\n",
"\n", "\n",
"os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n", "os.environ[\"QIANFAN_AK\"] = \"your_ak\"\n",
"os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n", "os.environ[\"QIANFAN_SK\"] = \"your_sk\"\n",

View File

@ -159,7 +159,7 @@
"from langchain.chat_models import ChatFireworks\n", "from langchain.chat_models import ChatFireworks\n",
"from langchain.memory import ConversationBufferMemory\n", "from langchain.memory import ConversationBufferMemory\n",
"from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n", "from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"llm = ChatFireworks(\n", "llm = ChatFireworks(\n",
" model=\"accounts/fireworks/models/llama-v2-13b-chat\",\n", " model=\"accounts/fireworks/models/llama-v2-13b-chat\",\n",

View File

@ -41,7 +41,7 @@
"import os\n", "import os\n",
"\n", "\n",
"from langchain.chat_models import PaiEasChatEndpoint\n", "from langchain.chat_models import PaiEasChatEndpoint\n",
"from langchain.chat_models.base import HumanMessage\n", "from langchain_core.language_models.chat_models import HumanMessage\n",
"\n", "\n",
"os.environ[\"EAS_SERVICE_URL\"] = \"Your_EAS_Service_URL\"\n", "os.environ[\"EAS_SERVICE_URL\"] = \"Your_EAS_Service_URL\"\n",
"os.environ[\"EAS_SERVICE_TOKEN\"] = \"Your_EAS_Service_Token\"\n", "os.environ[\"EAS_SERVICE_TOKEN\"] = \"Your_EAS_Service_Token\"\n",

View File

@ -516,7 +516,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"prompt = ChatPromptTemplate.from_messages(\n", "prompt = ChatPromptTemplate.from_messages(\n",
" [\n", " [\n",

View File

@ -360,7 +360,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"\n", "\n",
"prompt = ChatPromptTemplate.from_messages(\n", "prompt = ChatPromptTemplate.from_messages(\n",
" [\n", " [\n",

View File

@ -72,7 +72,7 @@
"source": [ "source": [
"from enum import Enum\n", "from enum import Enum\n",
"\n", "\n",
"from langchain.pydantic_v1 import BaseModel, Field\n", "from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n", "\n",
"\n", "\n",
"class Operation(Enum):\n", "class Operation(Enum):\n",
@ -135,8 +135,8 @@
"source": [ "source": [
"from pprint import pprint\n", "from pprint import pprint\n",
"\n", "\n",
"from langchain.pydantic_v1 import BaseModel\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n", "from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"\n", "\n",
"openai_function_def = convert_pydantic_to_openai_function(Calculator)\n", "openai_function_def = convert_pydantic_to_openai_function(Calculator)\n",
"pprint(openai_function_def)" "pprint(openai_function_def)"

View File

@ -472,7 +472,7 @@
"from typing import Dict, List\n", "from typing import Dict, List\n",
"\n", "\n",
"from langchain.document_loaders import DocugamiLoader\n", "from langchain.document_loaders import DocugamiLoader\n",
"from langchain.schema.document import Document\n", "from langchain_core.documents import Document\n",
"\n", "\n",
"loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n", "loader = DocugamiLoader(docset_id=\"zo954yqy53wp\")\n",
"loader.include_xml_tags = (\n", "loader.include_xml_tags = (\n",

View File

@ -74,7 +74,7 @@
"import asyncio\n", "import asyncio\n",
"\n", "\n",
"from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer\n", "from langchain.document_transformers.nuclia_text_transform import NucliaTextTransformer\n",
"from langchain.schema.document import Document\n", "from langchain_core.documents import Document\n",
"\n", "\n",
"\n", "\n",
"async def process():\n", "async def process():\n",

View File

@ -80,7 +80,7 @@
], ],
"source": [ "source": [
"from langchain.chat_models import ChatDatabricks\n", "from langchain.chat_models import ChatDatabricks\n",
"from langchain.schema.messages import HumanMessage\n", "from langchain_core.messages import HumanMessage\n",
"from mlflow.deployments import get_deploy_client\n", "from mlflow.deployments import get_deploy_client\n",
"\n", "\n",
"client = get_deploy_client(\"databricks\")\n", "client = get_deploy_client(\"databricks\")\n",

View File

@ -174,8 +174,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"import langchain.utilities.opaqueprompts as op\n", "import langchain.utilities.opaqueprompts as op\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"prompt = (PromptTemplate.from_template(prompt_template),)\n", "prompt = (PromptTemplate.from_template(prompt_template),)\n",
"llm = OpenAI()\n", "llm = OpenAI()\n",

View File

@ -40,7 +40,7 @@
"source": [ "source": [
"from langchain.llms import VolcEngineMaasLLM\n", "from langchain.llms import VolcEngineMaasLLM\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {

View File

@ -31,7 +31,7 @@ Databricks External Models
```python ```python
from langchain.chat_models import ChatDatabricks from langchain.chat_models import ChatDatabricks
from langchain.schema.messages import HumanMessage from langchain_core.messages import HumanMessage
from mlflow.deployments import get_deploy_client from mlflow.deployments import get_deploy_client

View File

@ -21,7 +21,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatCohere\n", "from langchain.chat_models import ChatCohere\n",
"from langchain.retrievers import CohereRagRetriever\n", "from langchain.retrievers import CohereRagRetriever\n",
"from langchain.schema.document import Document" "from langchain_core.documents import Document"
] ]
}, },
{ {

File diff suppressed because one or more lines are too long

View File

@ -65,9 +65,9 @@
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import Document\n", "from langchain.schema import Document\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter" "from langchain_core.runnables import RunnablePassthrough"
] ]
}, },
{ {

View File

@ -563,8 +563,8 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"rag_chain = (\n", "rag_chain = (\n",
" {\"context\": retriever, \"question\": RunnablePassthrough()}\n", " {\"context\": retriever, \"question\": RunnablePassthrough()}\n",

View File

@ -193,7 +193,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.agent import AgentFinish\n", "from langchain_core.agents import AgentFinish\n",
"\n", "\n",
"\n", "\n",
"def execute_agent(agent, tools, input):\n", "def execute_agent(agent, tools, input):\n",

View File

@ -23,9 +23,9 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.agents import AgentType, initialize_agent\n", "from langchain.agents import AgentType, initialize_agent\n",
"from langchain.agents.tools import Tool\n",
"from langchain.chains import LLMMathChain\n", "from langchain.chains import LLMMathChain\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain_core.tools import Tool\n",
"from pydantic.v1 import BaseModel, Field" "from pydantic.v1 import BaseModel, Field"
] ]
}, },

View File

@ -166,7 +166,7 @@
"source": [ "source": [
"import json\n", "import json\n",
"\n", "\n",
"from langchain.schema.agent import AgentActionMessageLog, AgentFinish" "from langchain_core.agents import AgentActionMessageLog, AgentFinish"
] ]
}, },
{ {

View File

@ -357,7 +357,7 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.agent import AgentFinish\n", "from langchain_core.agents import AgentFinish\n",
"\n", "\n",
"user_input = \"how many letters in the word educa?\"\n", "user_input = \"how many letters in the word educa?\"\n",
"intermediate_steps = []\n", "intermediate_steps = []\n",
@ -519,7 +519,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.messages import AIMessage, HumanMessage\n", "from langchain_core.messages import AIMessage, HumanMessage\n",
"\n", "\n",
"chat_history = []" "chat_history = []"
] ]

View File

@ -938,8 +938,8 @@
"from langchain.agents import AgentType, initialize_agent\n", "from langchain.agents import AgentType, initialize_agent\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.tools import Tool\n", "from langchain.tools import Tool\n",
"from langchain.tools.base import ToolException\n",
"from langchain.utilities import SerpAPIWrapper\n", "from langchain.utilities import SerpAPIWrapper\n",
"from langchain_core.tools import ToolException\n",
"\n", "\n",
"\n", "\n",
"def _handle_error(error: ToolException) -> str:\n", "def _handle_error(error: ToolException) -> str:\n",

View File

@ -35,8 +35,8 @@
"from langchain.chat_models import ChatAnthropic\n", "from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.prompt_template import format_document\n", "from langchain_core.prompts import format_document\n",
"from langchain.schema.runnable import RunnableParallel, RunnablePassthrough" "from langchain_core.runnables import RunnableParallel, RunnablePassthrough"
] ]
}, },
{ {

View File

@ -32,9 +32,9 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser\n", "from langchain.output_parsers.openai_functions import PydanticOutputFunctionsParser\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field\n", "from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
"from langchain.schema.prompt_template import format_document\n", "from langchain_core.prompts import format_document\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function" "from langchain_core.pydantic_v1 import BaseModel, Field"
] ]
}, },
{ {

View File

@ -51,7 +51,7 @@
"from langchain.chat_models import ChatAnthropic\n", "from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.prompt_template import format_document" "from langchain_core.prompts import format_document"
] ]
}, },
{ {

View File

@ -43,7 +43,7 @@
"from langchain.chat_models import ChatAnthropic\n", "from langchain.chat_models import ChatAnthropic\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.prompt_template import format_document" "from langchain_core.prompts import format_document"
] ]
}, },
{ {

View File

@ -58,8 +58,8 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnableBranch" "from langchain_core.runnables import RunnableBranch"
] ]
}, },
{ {
@ -89,8 +89,8 @@
"from typing import Literal\n", "from typing import Literal\n",
"\n", "\n",
"from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser\n", "from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser\n",
"from langchain.pydantic_v1 import BaseModel\n",
"from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n", "from langchain.utils.openai_functions import convert_pydantic_to_openai_function\n",
"from langchain_core.pydantic_v1 import BaseModel\n",
"\n", "\n",
"\n", "\n",
"class TopicClassifier(BaseModel):\n", "class TopicClassifier(BaseModel):\n",
@ -119,8 +119,8 @@
"source": [ "source": [
"from operator import itemgetter\n", "from operator import itemgetter\n",
"\n", "\n",
"from langchain.schema.output_parser import StrOutputParser\n", "from langchain_core.output_parsers import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"final_chain = (\n", "final_chain = (\n",
" RunnablePassthrough.assign(topic=itemgetter(\"input\") | classifier_chain)\n", " RunnablePassthrough.assign(topic=itemgetter(\"input\") | classifier_chain)\n",

View File

@ -107,7 +107,7 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"synopsis_chain = synopsis_prompt | llm | StrOutputParser()\n", "synopsis_chain = synopsis_prompt | llm | StrOutputParser()\n",
"review_chain = review_prompt | llm | StrOutputParser()\n", "review_chain = review_prompt | llm | StrOutputParser()\n",

View File

@ -29,7 +29,7 @@
")\n", ")\n",
"from langchain.chains.base import Chain\n", "from langchain.chains.base import Chain\n",
"from langchain.prompts.base import BasePromptTemplate\n", "from langchain.prompts.base import BasePromptTemplate\n",
"from langchain.schema.language_model import BaseLanguageModel\n", "from langchain_core.language_models import BaseLanguageModel\n",
"from pydantic import Extra\n", "from pydantic import Extra\n",
"\n", "\n",
"\n", "\n",

View File

@ -56,7 +56,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.pydantic_v1 import BaseModel, Field\n", "from langchain_core.pydantic_v1 import BaseModel, Field\n",
"\n", "\n",
"\n", "\n",
"class Person(BaseModel):\n", "class Person(BaseModel):\n",

View File

@ -118,7 +118,7 @@
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"template = \"\"\"Answer the question based only on the following context:\n", "template = \"\"\"Answer the question based only on the following context:\n",
"\n", "\n",

View File

@ -232,8 +232,8 @@
"\n", "\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import ChatPromptTemplate\n", "from langchain.prompts import ChatPromptTemplate\n",
"from langchain.schema.document import Document\n", "from langchain_core.documents import Document\n",
"from langchain.schema.output_parser import StrOutputParser" "from langchain_core.output_parsers import StrOutputParser"
] ]
}, },
{ {

View File

@ -104,7 +104,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema.messages import HumanMessage, SystemMessage\n", "from langchain_core.messages import HumanMessage, SystemMessage\n",
"\n", "\n",
"messages = [\n", "messages = [\n",
" SystemMessage(content=\"You're a helpful assistant\"),\n", " SystemMessage(content=\"You're a helpful assistant\"),\n",

View File

@ -30,7 +30,7 @@
"from typing import Any, List, Mapping, Optional\n", "from typing import Any, List, Mapping, Optional\n",
"\n", "\n",
"from langchain.callbacks.manager import CallbackManagerForLLMRun\n", "from langchain.callbacks.manager import CallbackManagerForLLMRun\n",
"from langchain.llms.base import LLM" "from langchain_core.language_models.llms import LLM"
] ]
}, },
{ {

View File

@ -53,7 +53,7 @@
"from langchain.llms import OpenAI\n", "from langchain.llms import OpenAI\n",
"from langchain.output_parsers import PydanticOutputParser\n", "from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field, validator\n", "from langchain_core.pydantic_v1 import BaseModel, Field, validator\n",
"\n", "\n",
"model = OpenAI(model_name=\"text-davinci-003\", temperature=0.0)\n", "model = OpenAI(model_name=\"text-davinci-003\", temperature=0.0)\n",
"\n", "\n",

View File

@ -9,7 +9,7 @@ For this example, we'll use the above Pydantic output parser. Here's what happen
```python ```python
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.output_parsers import PydanticOutputParser from langchain.output_parsers import PydanticOutputParser
from langchain.pydantic_v1 import BaseModel, Field from langchain_core.pydantic_v1 import BaseModel, Field
from typing import List from typing import List
``` ```

View File

@ -25,7 +25,7 @@
"from langchain.llms import OpenAI\n", "from langchain.llms import OpenAI\n",
"from langchain.output_parsers import PydanticOutputParser\n", "from langchain.output_parsers import PydanticOutputParser\n",
"from langchain.prompts import PromptTemplate\n", "from langchain.prompts import PromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel, Field, validator" "from langchain_core.pydantic_v1 import BaseModel, Field, validator"
] ]
}, },
{ {

View File

@ -203,7 +203,7 @@
"source": [ "source": [
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import HumanMessagePromptTemplate\n", "from langchain.prompts import HumanMessagePromptTemplate\n",
"from langchain.schema.messages import SystemMessage\n", "from langchain_core.messages import SystemMessage\n",
"\n", "\n",
"chat_template = ChatPromptTemplate.from_messages(\n", "chat_template = ChatPromptTemplate.from_messages(\n",
" [\n", " [\n",

View File

@ -38,7 +38,7 @@ chat_prompt = ChatPromptTemplate.from_messages([MessagesPlaceholder(variable_nam
```python ```python
from langchain.schema.messages import HumanMessage, AIMessage from langchain_core.messages import HumanMessage, AIMessage
human_message = HumanMessage(content="What is the best way to learn programming?") human_message = HumanMessage(content="What is the best way to learn programming?")
ai_message = AIMessage(content="""\ ai_message = AIMessage(content="""\

View File

@ -66,7 +66,7 @@
"\n", "\n",
"from langchain.chat_models import ChatOpenAI\n", "from langchain.chat_models import ChatOpenAI\n",
"from langchain.prompts import FewShotPromptTemplate, PromptTemplate\n", "from langchain.prompts import FewShotPromptTemplate, PromptTemplate\n",
"from langchain.pydantic_v1 import BaseModel\n", "from langchain_core.pydantic_v1 import BaseModel\n",
"from langchain_experimental.tabular_synthetic_data.openai import (\n", "from langchain_experimental.tabular_synthetic_data.openai import (\n",
" OPENAI_TEMPLATE,\n", " OPENAI_TEMPLATE,\n",
" create_openai_data_generator,\n", " create_openai_data_generator,\n",

View File

@ -382,7 +382,7 @@
"from typing import Optional\n", "from typing import Optional\n",
"\n", "\n",
"from langchain.chains import create_extraction_chain_pydantic\n", "from langchain.chains import create_extraction_chain_pydantic\n",
"from langchain.pydantic_v1 import BaseModel\n", "from langchain_core.pydantic_v1 import BaseModel\n",
"\n", "\n",
"\n", "\n",
"# Pydantic data class\n", "# Pydantic data class\n",

View File

@ -250,7 +250,7 @@
{ {
"data": { "data": {
"text/plain": [ "text/plain": [
"'To initialize a ReAct agent, you need to follow these steps:\\n\\n1. Initialize a language model `llm` of type `BaseLanguageModel`.\\n\\n2. Initialize a document store `docstore` of type `Docstore`.\\n\\n3. Create a `DocstoreExplorer` with the initialized `docstore`. The `DocstoreExplorer` is used to search for and look up terms in the document store.\\n\\n4. Create an array of `Tool` objects. The `Tool` objects represent the actions that the agent can perform. In the case of `ReActDocstoreAgent`, the tools must be \"Search\" and \"Lookup\" with their corresponding functions from the `DocstoreExplorer`.\\n\\n5. Initialize the `ReActDocstoreAgent` using the `from_llm_and_tools` method with the `llm` (language model) and `tools` as parameters.\\n\\n6. Initialize the `ReActChain` (which is the `AgentExecutor`) using the `ReActDocstoreAgent` and `tools` as parameters.\\n\\nHere is an example of how to do this:\\n\\n```python\\nfrom langchain.chains import ReActChain, OpenAI\\nfrom langchain.docstore.base import Docstore\\nfrom langchain.docstore.document import Document\\nfrom langchain.tools.base import BaseTool\\n\\n# Initialize the LLM and a docstore\\nllm = OpenAI()\\ndocstore = Docstore()\\n\\ndocstore_explorer = DocstoreExplorer(docstore)\\ntools = [\\n Tool(\\n name=\"Search\",\\n func=docstore_explorer.search,\\n description=\"Search for a term in the docstore.\",\\n ),\\n Tool(\\n name=\"Lookup\",\\n func=docstore_explorer.lookup,\\n description=\"Lookup a term in the docstore.\",\\n ),\\n]\\nagent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)\\nreact = ReActChain(agent=agent, tools=tools)\\n```\\n\\nKeep in mind that this is a simplified example and you might need to adapt it to your specific needs.'" "'To initialize a ReAct agent, you need to follow these steps:\\n\\n1. Initialize a language model `llm` of type `BaseLanguageModel`.\\n\\n2. Initialize a document store `docstore` of type `Docstore`.\\n\\n3. Create a `DocstoreExplorer` with the initialized `docstore`. The `DocstoreExplorer` is used to search for and look up terms in the document store.\\n\\n4. Create an array of `Tool` objects. The `Tool` objects represent the actions that the agent can perform. In the case of `ReActDocstoreAgent`, the tools must be \"Search\" and \"Lookup\" with their corresponding functions from the `DocstoreExplorer`.\\n\\n5. Initialize the `ReActDocstoreAgent` using the `from_llm_and_tools` method with the `llm` (language model) and `tools` as parameters.\\n\\n6. Initialize the `ReActChain` (which is the `AgentExecutor`) using the `ReActDocstoreAgent` and `tools` as parameters.\\n\\nHere is an example of how to do this:\\n\\n```python\\nfrom langchain.chains import ReActChain, OpenAI\\nfrom langchain.docstore.base import Docstore\\nfrom langchain.docstore.document import Document\\nfrom langchain_core.tools import BaseTool\\n\\n# Initialize the LLM and a docstore\\nllm = OpenAI()\\ndocstore = Docstore()\\n\\ndocstore_explorer = DocstoreExplorer(docstore)\\ntools = [\\n Tool(\\n name=\"Search\",\\n func=docstore_explorer.search,\\n description=\"Search for a term in the docstore.\",\\n ),\\n Tool(\\n name=\"Lookup\",\\n func=docstore_explorer.lookup,\\n description=\"Lookup a term in the docstore.\",\\n ),\\n]\\nagent = ReActDocstoreAgent.from_llm_and_tools(llm, tools)\\nreact = ReActChain(agent=agent, tools=tools)\\n```\\n\\nKeep in mind that this is a simplified example and you might need to adapt it to your specific needs.'"
] ]
}, },
"execution_count": 43, "execution_count": 43,

View File

@ -429,7 +429,7 @@
"source": [ "source": [
"from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent\n", "from langchain.agents.openai_functions_agent.base import OpenAIFunctionsAgent\n",
"from langchain.prompts import MessagesPlaceholder\n", "from langchain.prompts import MessagesPlaceholder\n",
"from langchain.schema.messages import SystemMessage" "from langchain_core.messages import SystemMessage"
] ]
}, },
{ {

View File

@ -162,9 +162,9 @@
"from langchain.document_loaders import WebBaseLoader\n", "from langchain.document_loaders import WebBaseLoader\n",
"from langchain.embeddings import OpenAIEmbeddings\n", "from langchain.embeddings import OpenAIEmbeddings\n",
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n",
"from langchain.text_splitter import RecursiveCharacterTextSplitter\n", "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
"from langchain.vectorstores import Chroma" "from langchain.vectorstores import Chroma\n",
"from langchain_core.runnables import RunnablePassthrough"
] ]
}, },
{ {
@ -687,7 +687,7 @@
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.schema import StrOutputParser\n", "from langchain.schema import StrOutputParser\n",
"from langchain.schema.runnable import RunnablePassthrough\n", "from langchain_core.runnables import RunnablePassthrough\n",
"\n", "\n",
"\n", "\n",
"def format_docs(docs):\n", "def format_docs(docs):\n",
@ -855,7 +855,7 @@
"source": [ "source": [
"from operator import itemgetter\n", "from operator import itemgetter\n",
"\n", "\n",
"from langchain.schema.runnable import RunnableParallel\n", "from langchain_core.runnables import RunnableParallel\n",
"\n", "\n",
"rag_chain_from_docs = (\n", "rag_chain_from_docs = (\n",
" {\n", " {\n",
@ -943,7 +943,7 @@
} }
], ],
"source": [ "source": [
"from langchain.schema.messages import AIMessage, HumanMessage\n", "from langchain_core.messages import AIMessage, HumanMessage\n",
"\n", "\n",
"condense_q_chain.invoke(\n", "condense_q_chain.invoke(\n",
" {\n", " {\n",

View File

@ -323,7 +323,7 @@
"metadata": {}, "metadata": {},
"outputs": [], "outputs": [],
"source": [ "source": [
"from langchain.pydantic_v1 import BaseModel, Field" "from langchain_core.pydantic_v1 import BaseModel, Field"
] ]
}, },
{ {

View File

@ -2,8 +2,8 @@ import os
from pathlib import Path from pathlib import Path
from langchain import chat_models, llms from langchain import chat_models, llms
from langchain.chat_models.base import BaseChatModel, SimpleChatModel from langchain_core.language_models.chat_models import BaseChatModel, SimpleChatModel
from langchain.llms.base import LLM, BaseLLM from langchain_core.language_models.llms import LLM, BaseLLM
INTEGRATIONS_DIR = Path(os.path.abspath(__file__)).parents[1] / "docs" / "integrations" INTEGRATIONS_DIR = Path(os.path.abspath(__file__)).parents[1] / "docs" / "integrations"
LLM_IGNORE = ("FakeListLLM", "OpenAIChat", "PromptLayerOpenAIChat") LLM_IGNORE = ("FakeListLLM", "OpenAIChat", "PromptLayerOpenAIChat")

View File

@ -1,8 +1,8 @@
from langchain.chat_models import ChatAnthropic from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel from langchain_core.output_parsers import StrOutputParser
from langchain.schema.output_parser import StrOutputParser from langchain_core.pydantic_v1 import BaseModel
from langchain.schema.runnable import ConfigurableField from langchain_core.runnables import ConfigurableField
from .prompts import answer_prompt from .prompts import answer_prompt
from .retriever_agent import executor from .retriever_agent import executor

View File

@ -1,6 +1,6 @@
import re import re
from langchain.schema.agent import AgentAction, AgentFinish from langchain_core.agents import AgentAction, AgentFinish
from .agent_scratchpad import _format_docs from .agent_scratchpad import _format_docs

View File

@ -1,8 +1,8 @@
from langchain.agents import AgentExecutor from langchain.agents import AgentExecutor
from langchain.chat_models import ChatAnthropic from langchain.chat_models import ChatAnthropic
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser from langchain_core.output_parsers import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from .agent_scratchpad import format_agent_scratchpad from .agent_scratchpad import format_agent_scratchpad
from .output_parser import parse_output from .output_parser import parse_output

View File

@ -7,8 +7,8 @@ from typing import Any, Dict, Sequence
from langchain.chains.openai_functions import convert_to_openai_function from langchain.chains.openai_functions import convert_to_openai_function
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel, Field, ValidationError, conint from langchain_core.pydantic_v1 import BaseModel, Field, ValidationError, conint
from langchain.schema.runnable import ( from langchain_core.runnables import (
Runnable, Runnable,
RunnableBranch, RunnableBranch,
RunnableLambda, RunnableLambda,

View File

@ -4,9 +4,9 @@ import cassio
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnablePassthrough
from langchain.vectorstores import Cassandra from langchain.vectorstores import Cassandra
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from .populate_vector_store import populate from .populate_vector_store import populate

View File

@ -6,7 +6,7 @@ from langchain.cache import CassandraCache
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.schema import BaseMessage from langchain.schema import BaseMessage
from langchain.schema.runnable import RunnableLambda from langchain_core.runnables import RunnableLambda
use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0")) use_cassandra = int(os.environ.get("USE_CASSANDRA_CLUSTER", "0"))
if use_cassandra: if use_cassandra:

View File

@ -1,9 +1,9 @@
from langchain import hub from langchain import hub
from langchain.chat_models import ChatAnthropic from langchain.chat_models import ChatAnthropic
from langchain.pydantic_v1 import BaseModel
from langchain.schema import StrOutputParser from langchain.schema import StrOutputParser
from langchain.schema.runnable import RunnableLambda, RunnablePassthrough
from langchain.utilities import WikipediaAPIWrapper from langchain.utilities import WikipediaAPIWrapper
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
class Question(BaseModel): class Question(BaseModel):

View File

@ -15,7 +15,7 @@ from langchain.schema import (
StrOutputParser, StrOutputParser,
get_buffer_string, get_buffer_string,
) )
from langchain.schema.runnable import Runnable from langchain_core.runnables import Runnable
from langsmith.evaluation import EvaluationResult, RunEvaluator from langsmith.evaluation import EvaluationResult, RunEvaluator
from langsmith.schemas import Example from langsmith.schemas import Example
from pydantic import BaseModel, Field from pydantic import BaseModel, Field

View File

@ -5,9 +5,9 @@ from langchain.agents import AgentExecutor, OpenAIFunctionsAgent
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools.retriever import create_retriever_tool from langchain.tools.retriever import create_retriever_tool
from langchain.vectorstores import FAISS from langchain.vectorstores import FAISS
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_experimental.tools import PythonAstREPLTool from langchain_experimental.tools import PythonAstREPLTool
MAIN_DIR = Path(__file__).parents[1] MAIN_DIR = Path(__file__).parents[1]

View File

@ -1,7 +1,7 @@
from elasticsearch import Elasticsearch from elasticsearch import Elasticsearch
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.output_parsers.json import SimpleJsonOutputParser from langchain.output_parsers.json import SimpleJsonOutputParser
from langchain.pydantic_v1 import BaseModel from langchain_core.pydantic_v1 import BaseModel
from .elastic_index_info import get_indices_infos from .elastic_index_info import get_indices_infos
from .prompts import DSL_PROMPT from .prompts import DSL_PROMPT

View File

@ -2,8 +2,8 @@ from typing import List, Optional
from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser from langchain.output_parsers.openai_functions import JsonKeyOutputFunctionsParser
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.utils.openai_functions import convert_pydantic_to_openai_function from langchain.utils.openai_functions import convert_pydantic_to_openai_function
from langchain_core.pydantic_v1 import BaseModel
from langchain_experimental.llms.anthropic_functions import AnthropicFunctions from langchain_experimental.llms.anthropic_functions import AnthropicFunctions
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article. template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.

View File

@ -3,8 +3,8 @@ from typing import List, Optional
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.utils.openai_functions import convert_pydantic_to_openai_function from langchain.utils.openai_functions import convert_pydantic_to_openai_function
from langchain_core.pydantic_v1 import BaseModel
template = """A article will be passed to you. Extract from it all papers that are mentioned by this article. template = """A article will be passed to you. Extract from it all papers that are mentioned by this article.

View File

@ -4,8 +4,8 @@ import weaviate
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever from langchain.retrievers.weaviate_hybrid_search import WeaviateHybridSearchRetriever
from langchain.schema.output_parser import StrOutputParser from langchain_core.output_parsers import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough from langchain_core.runnables import RunnableParallel, RunnablePassthrough
# Check env vars # Check env vars
if os.environ.get("WEAVIATE_API_KEY", None) is None: if os.environ.get("WEAVIATE_API_KEY", None) is None:

View File

@ -1,10 +1,10 @@
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel
from langchain.vectorstores import Chroma from langchain.vectorstores import Chroma
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel
from hyde.prompts import hyde_prompt from hyde.prompts import hyde_prompt

View File

@ -3,11 +3,11 @@ import os
from langchain.chat_models import ChatOpenAI from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings from langchain.embeddings import OpenAIEmbeddings
from langchain.prompts import ChatPromptTemplate from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel
from langchain.schema.document import Document
from langchain.schema.output_parser import StrOutputParser
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
from langchain.vectorstores import MongoDBAtlasVectorSearch from langchain.vectorstores import MongoDBAtlasVectorSearch
from langchain_core.documents import Document
from langchain_core.output_parsers import StrOutputParser
from langchain_core.pydantic_v1 import BaseModel
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
from pymongo import MongoClient from pymongo import MongoClient
MONGO_URI = os.environ["MONGO_URI"] MONGO_URI = os.environ["MONGO_URI"]

Some files were not shown because too many files have changed in this diff Show More