mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-04 04:28:58 +00:00
docs: formatting cleanup (#32188)
* formatting cleaning * make `init_chat_model` more prominent in list of guides
This commit is contained in:
@@ -20,8 +20,7 @@ LangChain is a framework that consists of a number of packages.
|
||||
|
||||
This package contains base abstractions for different components and ways to compose them together.
|
||||
The interfaces for core components like chat models, vector stores, tools and more are defined here.
|
||||
No third-party integrations are defined here.
|
||||
The dependencies are very lightweight.
|
||||
**No third-party integrations are defined here.** The dependencies are kept purposefully very lightweight.
|
||||
|
||||
## langchain
|
||||
|
||||
|
@@ -25,7 +25,7 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"%pip install -qU langchain>=0.2.8 langchain-openai langchain-anthropic langchain-google-vertexai"
|
||||
"%pip install -qU langchain langchain-openai langchain-anthropic langchain-google-genai"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -38,7 +38,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"execution_count": 5,
|
||||
"id": "79e14913-803c-4382-9009-5c6af3d75d35",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -49,38 +49,15 @@
|
||||
}
|
||||
},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/var/folders/4j/2rz3865x6qg07tx43146py8h0000gn/T/ipykernel_95293/571506279.py:4: LangChainBetaWarning: The function `init_chat_model` is in beta. It is actively being worked on, so the API may change.\n",
|
||||
" gpt_4o = init_chat_model(\"gpt-4o\", model_provider=\"openai\", temperature=0)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"GPT-4o: I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"GPT-4o: I’m called ChatGPT. How can I assist you today?\n",
|
||||
"\n",
|
||||
"Claude Opus: My name is Claude. It's nice to meet you!\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Gemini 1.5: I am a large language model, trained by Google. \n",
|
||||
"\n",
|
||||
"I don't have a name like a person does. You can call me Bard if you like! 😊 \n",
|
||||
"\n",
|
||||
"Gemini 2.5: I do not have a name. I am a large language model, trained by Google.\n",
|
||||
"\n"
|
||||
]
|
||||
}
|
||||
@@ -88,6 +65,10 @@
|
||||
"source": [
|
||||
"from langchain.chat_models import init_chat_model\n",
|
||||
"\n",
|
||||
"# Don't forget to set your environment variables for the API keys of the respective providers!\n",
|
||||
"# For example, you can set them in your terminal or in a .env file:\n",
|
||||
"# export OPENAI_API_KEY=\"your_openai_api_key\"\n",
|
||||
"\n",
|
||||
"# Returns a langchain_openai.ChatOpenAI instance.\n",
|
||||
"gpt_4o = init_chat_model(\"gpt-4o\", model_provider=\"openai\", temperature=0)\n",
|
||||
"# Returns a langchain_anthropic.ChatAnthropic instance.\n",
|
||||
@@ -96,13 +77,13 @@
|
||||
")\n",
|
||||
"# Returns a langchain_google_vertexai.ChatVertexAI instance.\n",
|
||||
"gemini_15 = init_chat_model(\n",
|
||||
" \"gemini-1.5-pro\", model_provider=\"google_vertexai\", temperature=0\n",
|
||||
" \"gemini-2.5-pro\", model_provider=\"google_genai\", temperature=0\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# Since all model integrations implement the ChatModel interface, you can use them in the same way.\n",
|
||||
"print(\"GPT-4o: \" + gpt_4o.invoke(\"what's your name\").content + \"\\n\")\n",
|
||||
"print(\"Claude Opus: \" + claude_opus.invoke(\"what's your name\").content + \"\\n\")\n",
|
||||
"print(\"Gemini 1.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
|
||||
"print(\"Gemini 2.5: \" + gemini_15.invoke(\"what's your name\").content + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -117,7 +98,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"execution_count": null,
|
||||
"id": "0378ccc6-95bc-4d50-be50-fccc193f0a71",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -131,7 +112,7 @@
|
||||
"source": [
|
||||
"gpt_4o = init_chat_model(\"gpt-4o\", temperature=0)\n",
|
||||
"claude_opus = init_chat_model(\"claude-3-opus-20240229\", temperature=0)\n",
|
||||
"gemini_15 = init_chat_model(\"gemini-1.5-pro\", temperature=0)"
|
||||
"gemini_15 = init_chat_model(\"gemini-2.5-pro\", temperature=0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -146,7 +127,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"execution_count": 7,
|
||||
"id": "6c037f27-12d7-4e83-811e-4245c0e3ba58",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -160,10 +141,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"I'm an AI created by OpenAI, and I don't have a personal name. How can I assist you today?\", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 23, 'prompt_tokens': 11, 'total_tokens': 34}, 'model_name': 'gpt-4o-2024-05-13', 'system_fingerprint': 'fp_25624ae3a5', 'finish_reason': 'stop', 'logprobs': None}, id='run-b41df187-4627-490d-af3c-1c96282d3eb0-0', usage_metadata={'input_tokens': 11, 'output_tokens': 23, 'total_tokens': 34})"
|
||||
"AIMessage(content='I’m called ChatGPT. How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 13, 'prompt_tokens': 11, 'total_tokens': 24, 'completion_tokens_details': {'accepted_prediction_tokens': 0, 'audio_tokens': 0, 'reasoning_tokens': 0, 'rejected_prediction_tokens': 0}, 'prompt_tokens_details': {'audio_tokens': 0, 'cached_tokens': 0}}, 'model_name': 'gpt-4o-2024-08-06', 'system_fingerprint': 'fp_07871e2ad8', 'id': 'chatcmpl-BwCyyBpMqn96KED6zPhLm4k9SQMiQ', 'service_tier': 'default', 'finish_reason': 'stop', 'logprobs': None}, id='run--fada10c3-4128-406c-b83d-a850d16b365f-0', usage_metadata={'input_tokens': 11, 'output_tokens': 13, 'total_tokens': 24, 'input_token_details': {'audio': 0, 'cache_read': 0}, 'output_token_details': {'audio': 0, 'reasoning': 0}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -178,7 +159,7 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"execution_count": 8,
|
||||
"id": "321e3036-abd2-4e1f-bcc6-606efd036954",
|
||||
"metadata": {
|
||||
"execution": {
|
||||
@@ -192,10 +173,10 @@
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01Fx9P74A7syoFkwE73CdMMY', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'input_tokens': 11, 'output_tokens': 15}}, id='run-a0fd2bbd-3b7e-46bf-8d69-a48c7e60b03c-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26})"
|
||||
"AIMessage(content=\"My name is Claude. It's nice to meet you!\", additional_kwargs={}, response_metadata={'id': 'msg_01VDGrG9D6yefanbBG9zPJrc', 'model': 'claude-3-5-sonnet-20240620', 'stop_reason': 'end_turn', 'stop_sequence': None, 'usage': {'cache_creation_input_tokens': 0, 'cache_read_input_tokens': 0, 'input_tokens': 11, 'output_tokens': 15, 'server_tool_use': None, 'service_tier': 'standard'}, 'model_name': 'claude-3-5-sonnet-20240620'}, id='run--f0156087-debf-4b4b-9aaa-f3328a81ef92-0', usage_metadata={'input_tokens': 11, 'output_tokens': 15, 'total_tokens': 26, 'input_token_details': {'cache_read': 0, 'cache_creation': 0}})"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
@@ -394,9 +375,9 @@
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "poetry-venv-2",
|
||||
"display_name": "langchain",
|
||||
"language": "python",
|
||||
"name": "poetry-venv-2"
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
@@ -408,7 +389,7 @@
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.9"
|
||||
"version": "3.10.16"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
|
@@ -34,6 +34,8 @@ These are the core building blocks you can use when building applications.
|
||||
[Chat Models](/docs/concepts/chat_models) are newer forms of language models that take messages in and output a message.
|
||||
See [supported integrations](/docs/integrations/chat/) for details on getting started with chat models from a specific provider.
|
||||
|
||||
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
- [How to: work with local models](/docs/how_to/local_llms)
|
||||
- [How to: do function/tool calling](/docs/how_to/tool_calling)
|
||||
- [How to: get models to return structured output](/docs/how_to/structured_output)
|
||||
- [How to: cache model responses](/docs/how_to/chat_model_caching)
|
||||
@@ -48,8 +50,6 @@ See [supported integrations](/docs/integrations/chat/) for details on getting st
|
||||
- [How to: few shot prompt tool behavior](/docs/how_to/tools_few_shot)
|
||||
- [How to: bind model-specific formatted tools](/docs/how_to/tools_model_specific)
|
||||
- [How to: force a specific tool call](/docs/how_to/tool_choice)
|
||||
- [How to: work with local models](/docs/how_to/local_llms)
|
||||
- [How to: init any model in one line](/docs/how_to/chat_models_universal_init/)
|
||||
- [How to: pass multimodal data directly to models](/docs/how_to/multimodal_inputs/)
|
||||
|
||||
### Messages
|
||||
|
@@ -13,15 +13,15 @@
|
||||
"\n",
|
||||
"This has at least two important benefits:\n",
|
||||
"\n",
|
||||
"1. `Privacy`: Your data is not sent to a third party, and it is not subject to the terms of service of a commercial service\n",
|
||||
"2. `Cost`: There is no inference fee, which is important for token-intensive applications (e.g., [long-running simulations](https://twitter.com/RLanceMartin/status/1691097659262820352?s=20), summarization)\n",
|
||||
"1. **Privacy**: Your data is not sent to a third party, and it is not subject to the terms of service of a commercial service\n",
|
||||
"2. **Cost**: There is no inference fee, which is important for token-intensive applications (e.g., [long-running simulations](https://twitter.com/RLanceMartin/status/1691097659262820352?s=20), summarization)\n",
|
||||
"\n",
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"Running an LLM locally requires a few things:\n",
|
||||
"\n",
|
||||
"1. `Open-source LLM`: An open-source LLM that can be freely modified and shared \n",
|
||||
"2. `Inference`: Ability to run this LLM on your device w/ acceptable latency\n",
|
||||
"1. **Open-source LLM**: An open-source LLM that can be freely modified and shared \n",
|
||||
"2. **Inference**: Ability to run this LLM on your device w/ acceptable latency\n",
|
||||
"\n",
|
||||
"### Open-source LLMs\n",
|
||||
"\n",
|
||||
@@ -29,8 +29,8 @@
|
||||
"\n",
|
||||
"These LLMs can be assessed across at least two dimensions (see figure):\n",
|
||||
" \n",
|
||||
"1. `Base model`: What is the base-model and how was it trained?\n",
|
||||
"2. `Fine-tuning approach`: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
|
||||
"1. **Base model**: What is the base-model and how was it trained?\n",
|
||||
"2. **Fine-tuning approach**: Was the base-model fine-tuned and, if so, what [set of instructions](https://cameronrwolfe.substack.com/p/beyond-llama-the-power-of-open-llms#%C2%A7alpaca-an-instruction-following-llama-model) was used?\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
@@ -51,8 +51,8 @@
|
||||
"\n",
|
||||
"In general, these frameworks will do a few things:\n",
|
||||
"\n",
|
||||
"1. `Quantization`: Reduce the memory footprint of the raw model weights\n",
|
||||
"2. `Efficient implementation for inference`: Support inference on consumer hardware (e.g., CPU or laptop GPU)\n",
|
||||
"1. **Quantization**: Reduce the memory footprint of the raw model weights\n",
|
||||
"2. **Efficient implementation for inference**: Support inference on consumer hardware (e.g., CPU or laptop GPU)\n",
|
||||
"\n",
|
||||
"In particular, see [this excellent post](https://finbarr.ca/how-is-llama-cpp-possible/) on the importance of quantization.\n",
|
||||
"\n",
|
||||
@@ -679,11 +679,17 @@
|
||||
"\n",
|
||||
"In general, use cases for local LLMs can be driven by at least two factors:\n",
|
||||
"\n",
|
||||
"* `Privacy`: private data (e.g., journals, etc) that a user does not want to share \n",
|
||||
"* `Cost`: text preprocessing (extraction/tagging), summarization, and agent simulations are token-use-intensive tasks\n",
|
||||
"* **Privacy**: private data (e.g., journals, etc) that a user does not want to share \n",
|
||||
"* **Cost**: text preprocessing (extraction/tagging), summarization, and agent simulations are token-use-intensive tasks\n",
|
||||
"\n",
|
||||
"In addition, [here](https://blog.langchain.dev/using-langsmith-to-support-fine-tuning-of-open-source-llms/) is an overview on fine-tuning, which can utilize open-source LLMs."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "14c2c170",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
Reference in New Issue
Block a user