mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-23 11:30:37 +00:00
infra: update mypy 1.10, ruff 0.5 (#23721)
```python """python scripts/update_mypy_ruff.py""" import glob import tomllib from pathlib import Path import toml import subprocess import re ROOT_DIR = Path(__file__).parents[1] def main(): for path in glob.glob(str(ROOT_DIR / "libs/**/pyproject.toml"), recursive=True): print(path) with open(path, "rb") as f: pyproject = tomllib.load(f) try: pyproject["tool"]["poetry"]["group"]["typing"]["dependencies"]["mypy"] = ( "^1.10" ) pyproject["tool"]["poetry"]["group"]["lint"]["dependencies"]["ruff"] = ( "^0.5" ) except KeyError: continue with open(path, "w") as f: toml.dump(pyproject, f) cwd = "/".join(path.split("/")[:-1]) completed = subprocess.run( "poetry lock --no-update; poetry install --with typing; poetry run mypy . --no-color", cwd=cwd, shell=True, capture_output=True, text=True, ) logs = completed.stdout.split("\n") to_ignore = {} for l in logs: if re.match("^(.*)\:(\d+)\: error:.*\[(.*)\]", l): path, line_no, error_type = re.match( "^(.*)\:(\d+)\: error:.*\[(.*)\]", l ).groups() if (path, line_no) in to_ignore: to_ignore[(path, line_no)].append(error_type) else: to_ignore[(path, line_no)] = [error_type] print(len(to_ignore)) for (error_path, line_no), error_types in to_ignore.items(): all_errors = ", ".join(error_types) full_path = f"{cwd}/{error_path}" try: with open(full_path, "r") as f: file_lines = f.readlines() except FileNotFoundError: continue file_lines[int(line_no) - 1] = ( file_lines[int(line_no) - 1][:-1] + f" # type: ignore[{all_errors}]\n" ) with open(full_path, "w") as f: f.write("".join(file_lines)) subprocess.run( "poetry run ruff format .; poetry run ruff --select I --fix .", cwd=cwd, shell=True, capture_output=True, text=True, ) if __name__ == "__main__": main() ```
This commit is contained in:
@@ -7,6 +7,7 @@ the prompt before the LLM call.
|
||||
and flexible online machine learning techniques for reinforcement learning,
|
||||
supervised learning, and more.
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from langchain_experimental.rl_chain.base import (
|
||||
|
@@ -192,16 +192,13 @@ class Policy(Generic[TEvent], ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def predict(self, event: TEvent) -> Any:
|
||||
...
|
||||
def predict(self, event: TEvent) -> Any: ...
|
||||
|
||||
@abstractmethod
|
||||
def learn(self, event: TEvent) -> None:
|
||||
...
|
||||
def learn(self, event: TEvent) -> None: ...
|
||||
|
||||
@abstractmethod
|
||||
def log(self, event: TEvent) -> None:
|
||||
...
|
||||
def log(self, event: TEvent) -> None: ...
|
||||
|
||||
def save(self) -> None:
|
||||
pass
|
||||
@@ -257,8 +254,7 @@ class Embedder(Generic[TEvent], ABC):
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def format(self, event: TEvent) -> str:
|
||||
...
|
||||
def format(self, event: TEvent) -> str: ...
|
||||
|
||||
|
||||
class SelectionScorer(Generic[TEvent], ABC, BaseModel):
|
||||
@@ -267,8 +263,7 @@ class SelectionScorer(Generic[TEvent], ABC, BaseModel):
|
||||
@abstractmethod
|
||||
def score_response(
|
||||
self, inputs: Dict[str, Any], llm_response: str, event: TEvent
|
||||
) -> float:
|
||||
...
|
||||
) -> float: ...
|
||||
|
||||
|
||||
class AutoSelectionScorer(SelectionScorer[Event], BaseModel):
|
||||
@@ -316,7 +311,7 @@ class AutoSelectionScorer(SelectionScorer[Event], BaseModel):
|
||||
[default_system_prompt, human_message_prompt]
|
||||
)
|
||||
values["prompt"] = prompt
|
||||
values["llm_chain"] = LLMChain(llm=llm, prompt=prompt)
|
||||
values["llm_chain"] = LLMChain(llm=llm, prompt=prompt) # type: ignore[arg-type, arg-type]
|
||||
return values
|
||||
|
||||
def score_response(
|
||||
@@ -495,26 +490,22 @@ class RLChain(Chain, Generic[TEvent]):
|
||||
return self.selection_scorer is not None and self.selection_scorer_activated
|
||||
|
||||
@abstractmethod
|
||||
def _call_before_predict(self, inputs: Dict[str, Any]) -> TEvent:
|
||||
...
|
||||
def _call_before_predict(self, inputs: Dict[str, Any]) -> TEvent: ...
|
||||
|
||||
@abstractmethod
|
||||
def _call_after_predict_before_llm(
|
||||
self, inputs: Dict[str, Any], event: TEvent, prediction: Any
|
||||
) -> Tuple[Dict[str, Any], TEvent]:
|
||||
...
|
||||
) -> Tuple[Dict[str, Any], TEvent]: ...
|
||||
|
||||
@abstractmethod
|
||||
def _call_after_llm_before_scoring(
|
||||
self, llm_response: str, event: TEvent
|
||||
) -> Tuple[Dict[str, Any], TEvent]:
|
||||
...
|
||||
) -> Tuple[Dict[str, Any], TEvent]: ...
|
||||
|
||||
@abstractmethod
|
||||
def _call_after_scoring_before_learning(
|
||||
self, event: TEvent, score: Optional[float]
|
||||
) -> TEvent:
|
||||
...
|
||||
) -> TEvent: ...
|
||||
|
||||
def _call(
|
||||
self,
|
||||
|
@@ -408,7 +408,7 @@ class PickBest(base.RLChain[PickBestEvent]):
|
||||
) -> PickBest:
|
||||
llm_chain = LLMChain(llm=llm, prompt=prompt)
|
||||
if selection_scorer is SENTINEL:
|
||||
selection_scorer = base.AutoSelectionScorer(llm=llm_chain.llm)
|
||||
selection_scorer = base.AutoSelectionScorer(llm=llm_chain.llm) # type: ignore[call-arg]
|
||||
|
||||
return PickBest(
|
||||
llm_chain=llm_chain,
|
||||
|
Reference in New Issue
Block a user