mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-24 20:09:01 +00:00
Readme rewrite (#12615)
Co-authored-by: Lance Martin <lance@langchain.dev> Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
@@ -1,18 +1,78 @@
|
||||
# SQL with LLaMA2 using llama.cpp
|
||||
# sql-ollama
|
||||
|
||||
This template allows you to chat with a SQL database in natural language in private, using an open source LLM.
|
||||
This template enables a user to interact with a SQL database using natural language.
|
||||
|
||||
## Set up Ollama
|
||||
It uses [Zephyr-7b](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha) via [Ollama](https://ollama.ai/library/zephyr) to run inference locally on a Mac laptop.
|
||||
|
||||
Follow instructions [here](https://python.langchain.com/docs/integrations/chat/ollama) to download Ollama.
|
||||
## Environment Setup
|
||||
|
||||
Also follow instructions to download your LLM of interest:
|
||||
Before using this template, you need to set up Ollama and SQL database.
|
||||
|
||||
* This template uses `llama2:13b-chat`
|
||||
* But you can pick from many LLMs [here](https://ollama.ai/library)
|
||||
1. Follow instructions [here](https://python.langchain.com/docs/integrations/chat/ollama) to download Ollama.
|
||||
|
||||
## Set up SQL DB
|
||||
2. Download your LLM of interest:
|
||||
|
||||
This template includes an example DB of 2023 NBA rosters.
|
||||
* This package uses `zephyr`: `ollama pull zephyr`
|
||||
* You can choose from many LLMs [here](https://ollama.ai/library)
|
||||
|
||||
You can see instructions to build this DB [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb).
|
||||
3. This package includes an example DB of 2023 NBA rosters. You can see instructions to build this DB [here](https://github.com/facebookresearch/llama-recipes/blob/main/demo_apps/StructuredLlama.ipynb).
|
||||
|
||||
## Usage
|
||||
|
||||
To use this package, you should first have the LangChain CLI installed:
|
||||
|
||||
```shell
|
||||
pip install -U "langchain-cli[serve]"
|
||||
```
|
||||
|
||||
To create a new LangChain project and install this as the only package, you can do:
|
||||
|
||||
```shell
|
||||
langchain app new my-app --package sql-ollama
|
||||
```
|
||||
|
||||
If you want to add this to an existing project, you can just run:
|
||||
|
||||
```shell
|
||||
langchain app add sql-ollama
|
||||
```
|
||||
|
||||
And add the following code to your `server.py` file:
|
||||
|
||||
```python
|
||||
from sql_ollama import chain as sql_ollama_chain
|
||||
|
||||
add_routes(app, sql_ollama_chain, path="/sql-ollama")
|
||||
```
|
||||
|
||||
(Optional) Let's now configure LangSmith.
|
||||
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||
If you don't have access, you can skip this section
|
||||
|
||||
|
||||
```shell
|
||||
export LANGCHAIN_TRACING_V2=true
|
||||
export LANGCHAIN_API_KEY=<your-api-key>
|
||||
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||
```
|
||||
|
||||
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||
|
||||
```shell
|
||||
langchain serve
|
||||
```
|
||||
|
||||
This will start the FastAPI app with a server is running locally at
|
||||
[http://localhost:8000](http://localhost:8000)
|
||||
|
||||
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||
We can access the playground at [http://127.0.0.1:8000/sql-ollama/playground](http://127.0.0.1:8000/sql-ollama/playground)
|
||||
|
||||
We can access the template from code with:
|
||||
|
||||
```python
|
||||
from langserve.client import RemoteRunnable
|
||||
|
||||
runnable = RemoteRunnable("http://localhost:8000/sql-ollama")
|
||||
```
|
Reference in New Issue
Block a user