mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-05 21:12:48 +00:00
rename repo namespace to langchain-ai (#11259)
### Description renamed several repository links from `hwchase17` to `langchain-ai`. ### Why I discovered that the README file in the devcontainer contains an old repository name, so I took the opportunity to rename the old repository name in all files within the repository, excluding those that do not require changes. ### Dependencies none ### Tag maintainer @baskaryan ### Twitter handle [kzk_maeda](https://twitter.com/kzk_maeda)
This commit is contained in:
@@ -39,7 +39,7 @@ Dependents stats for `langchain-ai/langchain`
|
||||
|[go-skynet/LocalAI](https://github.com/go-skynet/LocalAI) | 9955 |
|
||||
|[AIGC-Audio/AudioGPT](https://github.com/AIGC-Audio/AudioGPT) | 9081 |
|
||||
|[gventuri/pandas-ai](https://github.com/gventuri/pandas-ai) | 8201 |
|
||||
|[hwchase17/langchainjs](https://github.com/hwchase17/langchainjs) | 7754 |
|
||||
|[langchain-ai/langchainjs](https://github.com/langchain-ai/langchainjs) | 7754 |
|
||||
|[langgenius/dify](https://github.com/langgenius/dify) | 7348 |
|
||||
|[PipedreamHQ/pipedream](https://github.com/PipedreamHQ/pipedream) | 6950 |
|
||||
|[h2oai/h2ogpt](https://github.com/h2oai/h2ogpt) | 6858 |
|
||||
|
@@ -40,7 +40,7 @@
|
||||
"from git import Repo\n",
|
||||
"\n",
|
||||
"repo = Repo.clone_from(\n",
|
||||
" \"https://github.com/hwchase17/langchain\", to_path=\"./example_data/test_repo1\"\n",
|
||||
" \"https://github.com/langchain-ai/langchain\", to_path=\"./example_data/test_repo1\"\n",
|
||||
")\n",
|
||||
"branch = repo.head.reference"
|
||||
]
|
||||
@@ -123,7 +123,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = GitLoader(\n",
|
||||
" clone_url=\"https://github.com/hwchase17/langchain\",\n",
|
||||
" clone_url=\"https://github.com/langchain-ai/langchain\",\n",
|
||||
" repo_path=\"./example_data/test_repo2/\",\n",
|
||||
" branch=\"master\",\n",
|
||||
")"
|
||||
|
@@ -62,7 +62,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = GitHubIssuesLoader(\n",
|
||||
" repo=\"hwchase17/langchain\",\n",
|
||||
" repo=\"langchain-ai/langchain\",\n",
|
||||
" access_token=ACCESS_TOKEN, # delete/comment out this argument if you've set the access token as an env var.\n",
|
||||
" creator=\"UmerHA\",\n",
|
||||
")"
|
||||
@@ -117,7 +117,7 @@
|
||||
"DataLoaders\r\n",
|
||||
"- @eyurtsev\r\n",
|
||||
"\n",
|
||||
"{'url': 'https://github.com/hwchase17/langchain/pull/5408', 'title': 'DocumentLoader for GitHub', 'creator': 'UmerHA', 'created_at': '2023-05-29T14:50:53Z', 'comments': 0, 'state': 'open', 'labels': ['enhancement', 'lgtm', 'doc loader'], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5408, 'is_pull_request': True}\n"
|
||||
"{'url': 'https://github.com/langchain-ai/langchain/pull/5408', 'title': 'DocumentLoader for GitHub', 'creator': 'UmerHA', 'created_at': '2023-05-29T14:50:53Z', 'comments': 0, 'state': 'open', 'labels': ['enhancement', 'lgtm', 'doc loader'], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5408, 'is_pull_request': True}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
@@ -147,7 +147,7 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"loader = GitHubIssuesLoader(\n",
|
||||
" repo=\"hwchase17/langchain\",\n",
|
||||
" repo=\"langchain-ai/langchain\",\n",
|
||||
" access_token=ACCESS_TOKEN, # delete/comment out this argument if you've set the access token as an env var.\n",
|
||||
" creator=\"UmerHA\",\n",
|
||||
" include_prs=False,\n",
|
||||
@@ -220,7 +220,7 @@
|
||||
"### Expected behavior\n",
|
||||
"\n",
|
||||
"Chain should run\n",
|
||||
"{'url': 'https://github.com/hwchase17/langchain/issues/5027', 'title': \"ChatOpenAI models don't work with prompts created via ChatPromptTemplate.from_role_strings\", 'creator': 'UmerHA', 'created_at': '2023-05-20T10:39:18Z', 'comments': 1, 'state': 'open', 'labels': [], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5027, 'is_pull_request': False}\n"
|
||||
"{'url': 'https://github.com/langchain-ai/langchain/issues/5027', 'title': \"ChatOpenAI models don't work with prompts created via ChatPromptTemplate.from_role_strings\", 'creator': 'UmerHA', 'created_at': '2023-05-20T10:39:18Z', 'comments': 1, 'state': 'open', 'labels': [], 'assignee': None, 'milestone': None, 'locked': False, 'number': 5027, 'is_pull_request': False}\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
|
@@ -11,7 +11,7 @@
|
||||
"\n",
|
||||
"This notebook covers how to load content from HTML that was generated as part of a `Read-The-Docs` build.\n",
|
||||
"\n",
|
||||
"For an example of this in the wild, see [here](https://github.com/hwchase17/chat-langchain).\n",
|
||||
"For an example of this in the wild, see [here](https://github.com/langchain-ai/chat-langchain).\n",
|
||||
"\n",
|
||||
"This assumes that the HTML has already been scraped into a folder. This can be done by uncommenting and running the following command"
|
||||
]
|
||||
|
@@ -52,7 +52,7 @@
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"The [`langchain.llms.modal.Modal`](https://github.com/hwchase17/langchain/blame/master/langchain/llms/modal.py) integration class requires that you deploy a Modal application with a web endpoint that complies with the following JSON interface:\n",
|
||||
"The [`langchain.llms.modal.Modal`](https://github.com/langchain-ai/langchain/blame/master/langchain/llms/modal.py) integration class requires that you deploy a Modal application with a web endpoint that complies with the following JSON interface:\n",
|
||||
"\n",
|
||||
"1. The LLM prompt is accepted as a `str` value under the key `\"prompt\"`\n",
|
||||
"2. The LLM response returned as a `str` value under the key `\"prompt\"`\n",
|
||||
|
@@ -7,7 +7,7 @@
|
||||
"source": [
|
||||
"# Chat Over Documents with Vectara\n",
|
||||
"\n",
|
||||
"This notebook is based on the [chat_vector_db](https://github.com/hwchase17/langchain/blob/master/docs/modules/chains/index_examples/chat_vector_db.html) notebook, but using Vectara as the vector database."
|
||||
"This notebook is based on the [chat_vector_db](https://github.com/langchain-ai/langchain/blob/master/docs/modules/chains/index_examples/chat_vector_db.html) notebook, but using Vectara as the vector database."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -6,7 +6,7 @@
|
||||
"source": [
|
||||
"# Vectara Text Generation\n",
|
||||
"\n",
|
||||
"This notebook is based on [text generation](https://github.com/hwchase17/langchain/blob/master/docs/modules/chains/index_examples/vector_db_text_generation.ipynb) notebook and adapted to Vectara."
|
||||
"This notebook is based on [text generation](https://github.com/langchain-ai/langchain/blob/master/docs/modules/chains/index_examples/vector_db_text_generation.ipynb) notebook and adapted to Vectara."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -26,4 +26,4 @@ prompt.format(adjective="funny", content="chickens")
|
||||
# Output: Tell me a funny joke about chickens.
|
||||
```
|
||||
|
||||
Currently, only `jinja2` and `f-string` are supported. For other formats, kindly raise an issue on the [Github page](https://github.com/hwchase17/langchain/issues).
|
||||
Currently, only `jinja2` and `f-string` are supported. For other formats, kindly raise an issue on the [Github page](https://github.com/langchain-ai/langchain/issues).
|
||||
|
@@ -92,7 +92,7 @@
|
||||
"source": [
|
||||
"# Clone\n",
|
||||
"repo_path = \"/Users/rlm/Desktop/test_repo\"\n",
|
||||
"# repo = Repo.clone_from(\"https://github.com/hwchase17/langchain\", to_path=repo_path)"
|
||||
"# repo = Repo.clone_from(\"https://github.com/langchain-ai/langchain\", to_path=repo_path)"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -414,7 +414,7 @@
|
||||
"1. define a format they will produce their outputs in\n",
|
||||
"2. parse their outputs\n",
|
||||
"\n",
|
||||
"We can subclass the [RegexParser](https://github.com/hwchase17/langchain/blob/master/langchain/output_parsers/regex.py) to implement our own custom output parser for bids."
|
||||
"We can subclass the [RegexParser](https://github.com/langchain-ai/langchain/blob/master/langchain/output_parsers/regex.py) to implement our own custom output parser for bids."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -19,7 +19,7 @@
|
||||
"Here, we show how the AI Sales Agent can use a **Product Knowledge Base** to speak about a particular's company offerings,\n",
|
||||
"hence increasing relevance and reducing hallucinations.\n",
|
||||
"\n",
|
||||
"We leverage the [`langchain`](https://github.com/hwchase17/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
"We leverage the [`langchain`](https://github.com/langchain-ai/langchain) library in this implementation, specifically [Custom Agent Configuration](https://langchain-langchain.vercel.app/docs/modules/agents/how_to/custom_agent_with_tool_retrieval) and are inspired by [BabyAGI](https://github.com/yoheinakajima/babyagi) architecture ."
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -10,7 +10,7 @@
|
||||
"\n",
|
||||
"The CPAL chain builds on the recent PAL to stop LLM hallucination. The problem with the PAL approach is that it hallucinates on a math problem with a nested chain of dependence. The innovation here is that this new CPAL approach includes causal structure to fix hallucination.\n",
|
||||
"\n",
|
||||
"The original [PR's description](https://github.com/hwchase17/langchain/pull/6255) contains a full overview.\n",
|
||||
"The original [PR's description](https://github.com/langchain-ai/langchain/pull/6255) contains a full overview.\n",
|
||||
"\n",
|
||||
"Using the CPAL chain, the LLM translated this\n",
|
||||
"\n",
|
||||
|
@@ -617,7 +617,7 @@
|
||||
"\n",
|
||||
"For an even simpler flow, use `RetrievalQA`.\n",
|
||||
"\n",
|
||||
"This will use a QA default prompt (shown [here](https://github.com/hwchase17/langchain/blob/275b926cf745b5668d3ea30236635e20e7866442/langchain/chains/retrieval_qa/prompt.py#L4)) and will retrieve from the vectorDB.\n",
|
||||
"This will use a QA default prompt (shown [here](https://github.com/langchain-ai/langchain/blob/275b926cf745b5668d3ea30236635e20e7866442/langchain/chains/retrieval_qa/prompt.py#L4)) and will retrieve from the vectorDB.\n",
|
||||
"\n",
|
||||
"But, you can still pass in a prompt, as before, if desired."
|
||||
]
|
||||
|
Reference in New Issue
Block a user