docs: update integration docs for openai embeddings (#25249)

Related issue: https://github.com/langchain-ai/langchain/issues/24856

```json
   {
      "provider": "openai",
      "js":  true,
      "local": false,
     "serializable": false,
"async_native": true
  }
```

---------

Co-authored-by: Isaac Francisco <78627776+isahers1@users.noreply.github.com>
Co-authored-by: isaac hershenson <ihershenson@hmc.edu>
This commit is contained in:
Eugene Yurtsev 2024-08-13 20:21:36 -04:00 committed by GitHub
parent b1aed44540
commit a4ef830480
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -2,42 +2,88 @@
"cells": [
{
"cell_type": "raw",
"id": "ae8077b8",
"metadata": {
"vscode": {
"languageId": "raw"
}
},
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: OpenAI\n",
"keywords: [openaiembeddings]\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "278b6c63",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# OpenAI\n",
"# OpenAIEmbeddings\n",
"\n",
"Let's load the OpenAI Embedding class."
"This will help you get started with OpenAI embedding models using LangChain. For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n",
"\n",
"\n",
"## Overview\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"OpenAI\" />\n",
"\n",
"## Setup\n",
"\n",
"To access OpenAI embedding models you'll need to create a/an OpenAI account, get an API key, and install the `langchain-openai` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [platform.openai.com](https://platform.openai.com) to sign up to OpenAI and generate an API key. Once youve done this set the OPENAI_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"OPENAI_API_KEY\"):\n",
" os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"Enter your OpenAI API key: \")"
]
},
{
"cell_type": "markdown",
"id": "40ff98ff-58e9-4716-8788-227a5c3f473d",
"id": "c84fb993",
"metadata": {},
"source": [
"## Setup\n",
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"First we install langchain-openai and set the required env vars"
"The LangChain OpenAI integration lives in the `langchain-openai` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c66c4613-6c67-40ca-b3b1-c026750d1742",
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
@ -45,171 +91,55 @@
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "62e3710e-55a0-44fb-ba51-2f1d520dfc38",
"cell_type": "markdown",
"id": "45dd1724",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"## Instantiation\n",
"\n",
"os.environ[\"OPENAI_API_KEY\"] = getpass.getpass()"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "0be1af71",
"metadata": {},
"outputs": [],
"source": [
"from langchain_openai import OpenAIEmbeddings"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2c66e5da",
"metadata": {},
"outputs": [],
"source": [
"embeddings = OpenAIEmbeddings(model=\"text-embedding-3-large\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "01370375",
"metadata": {},
"outputs": [],
"source": [
"text = \"This is a test document.\""
]
},
{
"cell_type": "markdown",
"id": "f012c222-3fa9-470a-935c-758b2048d9af",
"metadata": {},
"source": [
"## Usage\n",
"### Embed query"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bfb6142c",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
]
}
],
"source": [
"query_result = embeddings.embed_query(text)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "91bc875d-829b-4c3d-8e6f-fc2dda30a3bd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.014380056377383358,\n",
" -0.027191711627651764,\n",
" -0.020042716111860304,\n",
" 0.057301379620345545,\n",
" -0.022267658631828974]"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"query_result[:5]"
]
},
{
"cell_type": "markdown",
"id": "6b733391-1e23-438b-a6bc-0d77eed9426e",
"metadata": {},
"source": [
"## Embed documents"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "0356c3b7",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
]
}
],
"source": [
"doc_result = embeddings.embed_documents([text])"
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "a4b0d49e-0c73-44b6-aed5-5b426564e085",
"id": "9ea7a09b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[-0.014380056377383358,\n",
" -0.027191711627651764,\n",
" -0.020042716111860304,\n",
" 0.057301379620345545,\n",
" -0.022267658631828974]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"outputs": [],
"source": [
"doc_result[0][:5]"
"from langchain_openai import OpenAIEmbeddings\n",
"\n",
"embeddings = OpenAIEmbeddings(\n",
" model=\"text-embedding-3-large\",\n",
" # With the `text-embedding-3` class\n",
" # of models, you can specify the size\n",
" # of the embeddings you want returned.\n",
" # dimensions=1024\n",
")"
]
},
{
"cell_type": "markdown",
"id": "e7dc464a-6fa2-4cff-ab2e-49a0566d819b",
"id": "77d271b6",
"metadata": {},
"source": [
"## Specify dimensions\n",
"## Indexing and Retrieval\n",
"\n",
"With the `text-embedding-3` class of models, you can specify the size of the embeddings you want returned. For example by default `text-embedding-3-large` returned embeddings of dimension 3072:"
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "f7be1e7b-54c6-4893-b8ad-b872e6705735",
"id": "d817716b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3072"
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 11,
@ -218,61 +148,111 @@
}
],
"source": [
"len(doc_result[0])"
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "33287142-0835-4958-962f-385ae4447431",
"id": "e02b9855",
"metadata": {},
"source": [
"But by passing in `dimensions=1024` we can reduce the size of our embeddings to 1024:"
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "854ee772-2de9-4a83-84e0-908033d98e4e",
"metadata": {},
"outputs": [],
"source": [
"embeddings_1024 = OpenAIEmbeddings(model=\"text-embedding-3-large\", dimensions=1024)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3b464396-8d94-478b-8329-849b56e1ae23",
"execution_count": 12,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stderr",
"name": "stdout",
"output_type": "stream",
"text": [
"Warning: model not found. Using cl100k_base encoding.\n"
"[-0.019276829436421394, 0.0037708976306021214, -0.03294256329536438, 0.0037671267054975033, 0.008175\n"
]
},
{
"data": {
"text/plain": [
"1024"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(embeddings_1024.embed_documents([text])[0])"
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"source": [
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[-0.019260549917817116, 0.0037612367887049913, -0.03291035071015358, 0.003757466096431017, 0.0082049\n",
"[-0.010181212797760963, 0.023419594392180443, -0.04215526953339577, -0.001532090245746076, -0.023573\n"
]
}
],
"source": [
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "98785c12",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation on `OpenAIEmbeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/langchain_openai.embeddings.base.OpenAIEmbeddings.html).\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "poetry-venv"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
@ -284,12 +264,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
},
"vscode": {
"interpreter": {
"hash": "e971737741ff4ec9aff7dc6155a1060a59a8a6d52c757dbbe66bf8ee389494b1"
}
"version": "3.11.4"
}
},
"nbformat": 4,