mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-10 15:33:11 +00:00
pinecone[patch], docs: PineconeVectorStore, release 0.0.3 (#17896)
This commit is contained in:
@@ -18,7 +18,7 @@ There exists a wrapper around Pinecone indexes, allowing you to use it as a vect
|
||||
whether for semantic search or example selection.
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores import Pinecone
|
||||
from langchain_pinecone import PineconeVectorStore
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Pinecone vectorstore, see [this notebook](/docs/integrations/vectorstores/pinecone)
|
||||
|
@@ -119,13 +119,8 @@
|
||||
"import pinecone\n",
|
||||
"\n",
|
||||
"api_key = os.getenv(\"PINECONE_API_KEY\") or \"PINECONE_API_KEY\"\n",
|
||||
"# find environment next to your API key in the Pinecone console\n",
|
||||
"env = os.getenv(\"PINECONE_ENVIRONMENT\") or \"PINECONE_ENVIRONMENT\"\n",
|
||||
"\n",
|
||||
"index_name = \"langchain-pinecone-hybrid-search\"\n",
|
||||
"\n",
|
||||
"pinecone.init(api_key=api_key, environment=env)\n",
|
||||
"pinecone.whoami()"
|
||||
"index_name = \"langchain-pinecone-hybrid-search\""
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@@ -78,8 +78,8 @@
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain.schema import Document\n",
|
||||
"from langchain_community.vectorstores import Pinecone\n",
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_pinecone import PineconeVectorStore\n",
|
||||
"\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"# create new index\n",
|
||||
@@ -124,7 +124,7 @@
|
||||
" },\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"vectorstore = Pinecone.from_documents(\n",
|
||||
"vectorstore = PineconeVectorStore.from_documents(\n",
|
||||
" docs, embeddings, index_name=\"langchain-self-retriever-demo\"\n",
|
||||
")"
|
||||
]
|
||||
|
@@ -71,7 +71,7 @@
|
||||
"source": [
|
||||
"Now let's assume you have your Pinecone index set up with `dimension=1536`.\n",
|
||||
"\n",
|
||||
"We can connect to our Pinecone index and insert those chunked docs as contents with `Pinecone.from_documents`."
|
||||
"We can connect to our Pinecone index and insert those chunked docs as contents with `PineconeVectorStore.from_documents`."
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -81,11 +81,11 @@
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_pinecone import Pinecone\n",
|
||||
"from langchain_pinecone import PineconeVectorStore\n",
|
||||
"\n",
|
||||
"index_name = \"langchain-test-index\"\n",
|
||||
"\n",
|
||||
"docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)"
|
||||
"docsearch = PineconeVectorStore.from_documents(docs, embeddings, index_name=index_name)"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -143,7 +143,7 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"vectorstore = Pinecone(index_name=index_name, embedding=embeddings)\n",
|
||||
"vectorstore = PineconeVectorStore(index_name=index_name, embedding=embeddings)\n",
|
||||
"\n",
|
||||
"vectorstore.add_texts([\"More text!\"])"
|
||||
]
|
||||
|
@@ -35,28 +35,22 @@
|
||||
"\n",
|
||||
"## Code Example\n",
|
||||
"\n",
|
||||
"Let's see a concrete example of what this looks like in code. We will use Pinecone for this example."
|
||||
"Let's see a concrete example of what this looks like in code. We will use Pinecone for this example.\n",
|
||||
"\n",
|
||||
"To configure Pinecone, set the following environment variable:\n",
|
||||
"\n",
|
||||
"- `PINECONE_API_KEY`: Your Pinecone API key"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"execution_count": null,
|
||||
"id": "75823b2d",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/harrisonchase/.pyenv/versions/3.10.1/envs/langchain/lib/python3.10/site-packages/pinecone/index.py:4: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
|
||||
" from tqdm.autonotebook import tqdm\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import pinecone\n",
|
||||
"from langchain_community.vectorstores import Pinecone\n",
|
||||
"from langchain_openai import OpenAIEmbeddings"
|
||||
"from langchain_openai import OpenAIEmbeddings\n",
|
||||
"from langchain_pinecone import PineconeVectorStore"
|
||||
]
|
||||
},
|
||||
{
|
||||
@@ -77,12 +71,8 @@
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# The environment should be the one specified next to the API key\n",
|
||||
"# in your Pinecone console\n",
|
||||
"pinecone.init(api_key=\"...\", environment=\"...\")\n",
|
||||
"index = pinecone.Index(\"test-example\")\n",
|
||||
"embeddings = OpenAIEmbeddings()\n",
|
||||
"vectorstore = Pinecone(index, embeddings, \"text\")\n",
|
||||
"vectorstore = PineconeVectorStore(index_name=\"test-example\", embedding=embeddings)\n",
|
||||
"\n",
|
||||
"vectorstore.add_texts([\"i worked at kensho\"], namespace=\"harrison\")\n",
|
||||
"vectorstore.add_texts([\"i worked at facebook\"], namespace=\"ankush\")"
|
||||
@@ -301,15 +291,16 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"source": [
|
||||
"For more vectorstore implementations for multi-user, please refer to specific pages, such as [Milvus](/docs/integrations/vectorstores/milvus)."
|
||||
],
|
||||
"id": "7fb27b941602401d91542211134fc71a",
|
||||
"metadata": {
|
||||
"collapsed": false,
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"For more vectorstore implementations for multi-user, please refer to specific pages, such as [Milvus](/docs/integrations/vectorstores/milvus)."
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
@@ -333,4 +324,4 @@
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
||||
}
|
||||
|
Reference in New Issue
Block a user