mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 23:13:31 +00:00
mistralai: Add langchain-mistralai partner package (#14783)
Co-authored-by: Chad Phillips <chad@apartmentlines.com>
This commit is contained in:
1
libs/partners/mistralai/.gitignore
vendored
Normal file
1
libs/partners/mistralai/.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
__pycache__
|
21
libs/partners/mistralai/LICENSE
Normal file
21
libs/partners/mistralai/LICENSE
Normal file
@@ -0,0 +1,21 @@
|
||||
MIT License
|
||||
|
||||
Copyright (c) 2023 LangChain, Inc.
|
||||
|
||||
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
of this software and associated documentation files (the "Software"), to deal
|
||||
in the Software without restriction, including without limitation the rights
|
||||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
copies of the Software, and to permit persons to whom the Software is
|
||||
furnished to do so, subject to the following conditions:
|
||||
|
||||
The above copyright notice and this permission notice shall be included in all
|
||||
copies or substantial portions of the Software.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
62
libs/partners/mistralai/Makefile
Normal file
62
libs/partners/mistralai/Makefile
Normal file
@@ -0,0 +1,62 @@
|
||||
.PHONY: all format lint test tests integration_tests docker_tests help extended_tests
|
||||
|
||||
# Default target executed when no arguments are given to make.
|
||||
all: help
|
||||
|
||||
# Define a variable for the test file path.
|
||||
TEST_FILE ?= tests/unit_tests/
|
||||
INTEGRATION_TEST_FILE ?= tests/integration_tests/
|
||||
|
||||
integration_test integration_tests: TEST_FILE=$(INTEGRATION_TEST_FILE)
|
||||
|
||||
test tests:
|
||||
poetry run pytest $(TEST_FILE)
|
||||
|
||||
integration_test integration_tests:
|
||||
poetry run pytest $(TEST_FILE)
|
||||
|
||||
|
||||
######################
|
||||
# LINTING AND FORMATTING
|
||||
######################
|
||||
|
||||
# Define a variable for Python and notebook files.
|
||||
PYTHON_FILES=.
|
||||
MYPY_CACHE=.mypy_cache
|
||||
lint format: PYTHON_FILES=.
|
||||
lint_diff format_diff: PYTHON_FILES=$(shell git diff --relative=libs/partners/mistral --name-only --diff-filter=d master | grep -E '\.py$$|\.ipynb$$')
|
||||
lint_package: PYTHON_FILES=langchain_mistralai
|
||||
lint_tests: PYTHON_FILES=tests
|
||||
lint_tests: MYPY_CACHE=.mypy_cache_test
|
||||
|
||||
lint lint_diff lint_package lint_tests:
|
||||
poetry run ruff .
|
||||
poetry run ruff format $(PYTHON_FILES) --diff
|
||||
poetry run ruff --select I $(PYTHON_FILES)
|
||||
mkdir $(MYPY_CACHE); poetry run mypy $(PYTHON_FILES) --cache-dir $(MYPY_CACHE)
|
||||
|
||||
format format_diff:
|
||||
poetry run ruff format $(PYTHON_FILES)
|
||||
poetry run ruff --select I --fix $(PYTHON_FILES)
|
||||
|
||||
spell_check:
|
||||
poetry run codespell --toml pyproject.toml
|
||||
|
||||
spell_fix:
|
||||
poetry run codespell --toml pyproject.toml -w
|
||||
|
||||
check_imports: $(shell find langchain_mistralai -name '*.py')
|
||||
poetry run python ./scripts/check_imports.py $^
|
||||
|
||||
######################
|
||||
# HELP
|
||||
######################
|
||||
|
||||
help:
|
||||
@echo '----'
|
||||
@echo 'check_imports - check imports'
|
||||
@echo 'format - run code formatters'
|
||||
@echo 'lint - run linters'
|
||||
@echo 'test - run unit tests'
|
||||
@echo 'tests - run unit tests'
|
||||
@echo 'test TEST_FILE=<test_file> - run all tests in file'
|
1
libs/partners/mistralai/README.md
Normal file
1
libs/partners/mistralai/README.md
Normal file
@@ -0,0 +1 @@
|
||||
# langchain-mistralai
|
3
libs/partners/mistralai/langchain_mistralai/__init__.py
Normal file
3
libs/partners/mistralai/langchain_mistralai/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
from langchain_mistralai.chat_models import ChatMistralAI
|
||||
|
||||
__all__ = ["ChatMistralAI"]
|
390
libs/partners/mistralai/langchain_mistralai/chat_models.py
Normal file
390
libs/partners/mistralai/langchain_mistralai/chat_models.py
Normal file
@@ -0,0 +1,390 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.util
|
||||
import logging
|
||||
from typing import (
|
||||
Any,
|
||||
AsyncIterator,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
Union,
|
||||
)
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
agenerate_from_stream,
|
||||
generate_from_stream,
|
||||
)
|
||||
from langchain_core.language_models.llms import create_base_retry_decorator
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
)
|
||||
from langchain_core.outputs import (
|
||||
ChatGeneration,
|
||||
ChatGenerationChunk,
|
||||
ChatResult,
|
||||
)
|
||||
from langchain_core.pydantic_v1 import root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env
|
||||
|
||||
# TODO: Remove 'type: ignore' once mistralai has stubs or py.typed marker.
|
||||
from mistralai.async_client import MistralAsyncClient # type: ignore[import]
|
||||
from mistralai.client import MistralClient # type: ignore[import]
|
||||
from mistralai.constants import ( # type: ignore[import]
|
||||
ENDPOINT as DEFAULT_MISTRAL_ENDPOINT,
|
||||
)
|
||||
from mistralai.exceptions import ( # type: ignore[import]
|
||||
MistralAPIException,
|
||||
MistralConnectionException,
|
||||
MistralException,
|
||||
)
|
||||
from mistralai.models.chat_completion import ( # type: ignore[import]
|
||||
ChatCompletionResponse as MistralChatCompletionResponse,
|
||||
)
|
||||
from mistralai.models.chat_completion import ( # type: ignore[import]
|
||||
ChatMessage as MistralChatMessage,
|
||||
)
|
||||
from mistralai.models.chat_completion import ( # type: ignore[import]
|
||||
DeltaMessage as MistralDeltaMessage,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _create_retry_decorator(
|
||||
llm: ChatMistralAI,
|
||||
run_manager: Optional[
|
||||
Union[AsyncCallbackManagerForLLMRun, CallbackManagerForLLMRun]
|
||||
] = None,
|
||||
) -> Callable[[Any], Any]:
|
||||
"""Returns a tenacity retry decorator, preconfigured to handle exceptions"""
|
||||
|
||||
errors = [
|
||||
MistralException,
|
||||
MistralAPIException,
|
||||
MistralConnectionException,
|
||||
]
|
||||
return create_base_retry_decorator(
|
||||
error_types=errors, max_retries=llm.max_retries, run_manager=run_manager
|
||||
)
|
||||
|
||||
|
||||
def _convert_mistral_chat_message_to_message(
|
||||
_message: MistralChatMessage,
|
||||
) -> BaseMessage:
|
||||
role = _message.role
|
||||
if role == "user":
|
||||
return HumanMessage(content=_message.content)
|
||||
elif role == "assistant":
|
||||
return AIMessage(content=_message.content)
|
||||
elif role == "system":
|
||||
return SystemMessage(content=_message.content)
|
||||
else:
|
||||
return ChatMessage(content=_message.content, role=role)
|
||||
|
||||
|
||||
async def acompletion_with_retry(
|
||||
llm: ChatMistralAI,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Any:
|
||||
"""Use tenacity to retry the async completion call."""
|
||||
retry_decorator = _create_retry_decorator(llm, run_manager=run_manager)
|
||||
|
||||
@retry_decorator
|
||||
async def _completion_with_retry(**kwargs: Any) -> Any:
|
||||
client = MistralAsyncClient(
|
||||
api_key=llm.mistral_api_key,
|
||||
endpoint=llm.endpoint,
|
||||
max_retries=llm.max_retries,
|
||||
timeout=llm.timeout,
|
||||
max_concurrent_requests=llm.max_concurrent_requests,
|
||||
)
|
||||
stream = kwargs.pop("stream", False)
|
||||
if stream:
|
||||
return client.chat_stream(**kwargs)
|
||||
else:
|
||||
return await client.chat(**kwargs)
|
||||
|
||||
return await _completion_with_retry(**kwargs)
|
||||
|
||||
|
||||
def _convert_delta_to_message_chunk(
|
||||
_obj: MistralDeltaMessage, default_class: Type[BaseMessageChunk]
|
||||
) -> BaseMessageChunk:
|
||||
role = getattr(_obj, "role")
|
||||
content = getattr(_obj, "content", "")
|
||||
if role == "user" or default_class == HumanMessageChunk:
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(content=content)
|
||||
elif role == "system" or default_class == SystemMessageChunk:
|
||||
return SystemMessageChunk(content=content)
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
else:
|
||||
return default_class(content=content)
|
||||
|
||||
|
||||
def _convert_message_to_mistral_chat_message(
|
||||
message: BaseMessage,
|
||||
) -> MistralChatMessage:
|
||||
if isinstance(message, ChatMessage):
|
||||
mistral_message = MistralChatMessage(role=message.role, content=message.content)
|
||||
elif isinstance(message, HumanMessage):
|
||||
mistral_message = MistralChatMessage(role="user", content=message.content)
|
||||
elif isinstance(message, AIMessage):
|
||||
mistral_message = MistralChatMessage(role="assistant", content=message.content)
|
||||
elif isinstance(message, SystemMessage):
|
||||
mistral_message = MistralChatMessage(role="system", content=message.content)
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
return mistral_message
|
||||
|
||||
|
||||
class ChatMistralAI(BaseChatModel):
|
||||
"""A chat model that uses the MistralAI API."""
|
||||
|
||||
client: Any #: :meta private:
|
||||
mistral_api_key: Optional[str] = None
|
||||
endpoint: str = DEFAULT_MISTRAL_ENDPOINT
|
||||
max_retries: int = 5
|
||||
timeout: int = 120
|
||||
max_concurrent_requests: int = 64
|
||||
|
||||
model: str = "mistral-small"
|
||||
temperature: float = 0.7
|
||||
max_tokens: Optional[int] = None
|
||||
top_p: float = 1
|
||||
"""Decode using nucleus sampling: consider the smallest set of tokens whose
|
||||
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
|
||||
random_seed: Optional[int] = None
|
||||
safe_mode: bool = False
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling the API."""
|
||||
defaults = {
|
||||
"model": self.model,
|
||||
"temperature": self.temperature,
|
||||
"max_tokens": self.max_tokens,
|
||||
"top_p": self.top_p,
|
||||
"random_seed": self.random_seed,
|
||||
"safe_mode": self.safe_mode,
|
||||
}
|
||||
filtered = {k: v for k, v in defaults.items() if v is not None}
|
||||
return filtered
|
||||
|
||||
@property
|
||||
def _client_params(self) -> Dict[str, Any]:
|
||||
"""Get the parameters used for the client."""
|
||||
return self._default_params
|
||||
|
||||
def completion_with_retry(
|
||||
self, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any
|
||||
) -> Any:
|
||||
"""Use tenacity to retry the completion call."""
|
||||
retry_decorator = _create_retry_decorator(self, run_manager=run_manager)
|
||||
|
||||
@retry_decorator
|
||||
def _completion_with_retry(**kwargs: Any) -> Any:
|
||||
stream = kwargs.pop("stream", False)
|
||||
if stream:
|
||||
return self.client.chat_stream(**kwargs)
|
||||
else:
|
||||
return self.client.chat(**kwargs)
|
||||
|
||||
return _completion_with_retry(**kwargs)
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate api key, python package exists, temperature, and top_p."""
|
||||
mistralai_spec = importlib.util.find_spec("mistralai")
|
||||
if mistralai_spec is None:
|
||||
raise MistralException(
|
||||
"Could not find mistralai python package. "
|
||||
"Please install it with `pip install mistralai`"
|
||||
)
|
||||
|
||||
values["mistral_api_key"] = get_from_dict_or_env(
|
||||
values, "mistral_api_key", "MISTRAL_API_KEY", default=""
|
||||
)
|
||||
values["client"] = MistralClient(
|
||||
api_key=values["mistral_api_key"],
|
||||
endpoint=values["endpoint"],
|
||||
max_retries=values["max_retries"],
|
||||
timeout=values["timeout"],
|
||||
)
|
||||
|
||||
if values["temperature"] is not None and not 0 <= values["temperature"] <= 1:
|
||||
raise ValueError("temperature must be in the range [0.0, 1.0]")
|
||||
|
||||
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
|
||||
raise ValueError("top_p must be in the range [0.0, 1.0]")
|
||||
|
||||
return values
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else False
|
||||
if should_stream:
|
||||
stream_iter = self._stream(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return generate_from_stream(stream_iter)
|
||||
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
params = {**params, **kwargs}
|
||||
response = self.completion_with_retry(
|
||||
messages=message_dicts, run_manager=run_manager, **params
|
||||
)
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _create_chat_result(
|
||||
self, response: MistralChatCompletionResponse
|
||||
) -> ChatResult:
|
||||
generations = []
|
||||
for res in response.choices:
|
||||
finish_reason = getattr(res, "finish_reason")
|
||||
if finish_reason:
|
||||
finish_reason = finish_reason.value
|
||||
gen = ChatGeneration(
|
||||
message=_convert_mistral_chat_message_to_message(res.message),
|
||||
generation_info={"finish_reason": finish_reason},
|
||||
)
|
||||
generations.append(gen)
|
||||
token_usage = getattr(response, "usage")
|
||||
token_usage = vars(token_usage) if token_usage else {}
|
||||
llm_output = {"token_usage": token_usage, "model": self.model}
|
||||
return ChatResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
def _create_message_dicts(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]]
|
||||
) -> Tuple[List[MistralChatMessage], Dict[str, Any]]:
|
||||
params = self._client_params
|
||||
if stop is not None:
|
||||
if "stop" in params:
|
||||
raise ValueError("`stop` found in both the input and default params.")
|
||||
params["stop"] = stop
|
||||
message_dicts = [_convert_message_to_mistral_chat_message(m) for m in messages]
|
||||
return message_dicts, params
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
|
||||
default_chunk_class = AIMessageChunk
|
||||
for chunk in self.completion_with_retry(
|
||||
messages=message_dicts, run_manager=run_manager, **params
|
||||
):
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
delta = chunk.choices[0].delta
|
||||
if not delta.content:
|
||||
continue
|
||||
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
||||
default_chunk_class = chunk.__class__
|
||||
yield ChatGenerationChunk(message=chunk)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.content)
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[ChatGenerationChunk]:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
params = {**params, **kwargs, "stream": True}
|
||||
|
||||
default_chunk_class = AIMessageChunk
|
||||
async for chunk in await acompletion_with_retry(
|
||||
self, messages=message_dicts, run_manager=run_manager, **params
|
||||
):
|
||||
if len(chunk.choices) == 0:
|
||||
continue
|
||||
delta = chunk.choices[0].delta
|
||||
if not delta.content:
|
||||
continue
|
||||
chunk = _convert_delta_to_message_chunk(delta, default_chunk_class)
|
||||
default_chunk_class = chunk.__class__
|
||||
yield ChatGenerationChunk(message=chunk)
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(chunk.content)
|
||||
|
||||
async def _agenerate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else False
|
||||
if should_stream:
|
||||
stream_iter = self._astream(
|
||||
messages=messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return await agenerate_from_stream(stream_iter)
|
||||
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
params = {**params, **kwargs}
|
||||
response = await acompletion_with_retry(
|
||||
self, messages=message_dicts, run_manager=run_manager, **params
|
||||
)
|
||||
return self._create_chat_result(response)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Dict[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return self._default_params
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of chat model."""
|
||||
return "mistralai-chat"
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
return {"mistral_api_key": "MISTRAL_API_KEY"}
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
"""Return whether this model can be serialized by Langchain."""
|
||||
return True
|
||||
|
||||
@classmethod
|
||||
def get_lc_namespace(cls) -> List[str]:
|
||||
"""Get the namespace of the langchain object."""
|
||||
return ["langchain", "chat_models", "mistralai"]
|
1212
libs/partners/mistralai/poetry.lock
generated
Normal file
1212
libs/partners/mistralai/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
83
libs/partners/mistralai/pyproject.toml
Normal file
83
libs/partners/mistralai/pyproject.toml
Normal file
@@ -0,0 +1,83 @@
|
||||
[tool.poetry]
|
||||
name = "langchain-mistralai"
|
||||
version = "0.0.1"
|
||||
description = "An integration package connecting Mistral and LangChain"
|
||||
authors = []
|
||||
readme = "README.md"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.8.1,<4.0"
|
||||
langchain-core = "^0.1"
|
||||
mistralai = "^0.0.8"
|
||||
|
||||
[tool.poetry.group.test]
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.test.dependencies]
|
||||
pytest = "^7.3.0"
|
||||
pytest-asyncio = "^0.21.1"
|
||||
langchain-core = {path = "../../core", develop = true}
|
||||
|
||||
[tool.poetry.group.codespell]
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.codespell.dependencies]
|
||||
codespell = "^2.2.0"
|
||||
|
||||
[tool.poetry.group.test_integration]
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.test_integration.dependencies]
|
||||
|
||||
[tool.poetry.group.lint]
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.lint.dependencies]
|
||||
ruff = "^0.1.5"
|
||||
|
||||
[tool.poetry.group.typing.dependencies]
|
||||
mypy = "^0.991"
|
||||
langchain-core = {path = "../../core", develop = true}
|
||||
|
||||
[tool.poetry.group.dev]
|
||||
optional = true
|
||||
|
||||
[tool.poetry.group.dev.dependencies]
|
||||
langchain-core = {path = "../../core", develop = true}
|
||||
|
||||
[tool.ruff]
|
||||
select = [
|
||||
"E", # pycodestyle
|
||||
"F", # pyflakes
|
||||
"I", # isort
|
||||
]
|
||||
|
||||
[tool.mypy]
|
||||
disallow_untyped_defs = "True"
|
||||
|
||||
[tool.coverage.run]
|
||||
omit = [
|
||||
"tests/*",
|
||||
]
|
||||
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
# --strict-markers will raise errors on unknown marks.
|
||||
# https://docs.pytest.org/en/7.1.x/how-to/mark.html#raising-errors-on-unknown-marks
|
||||
#
|
||||
# https://docs.pytest.org/en/7.1.x/reference/reference.html
|
||||
# --strict-config any warnings encountered while parsing the `pytest`
|
||||
# section of the configuration file raise errors.
|
||||
#
|
||||
addopts = "--strict-markers --strict-config --durations=5"
|
||||
# Registering custom markers.
|
||||
# https://docs.pytest.org/en/7.1.x/example/markers.html#registering-markers
|
||||
markers = [
|
||||
"requires: mark tests as requiring a specific library",
|
||||
"asyncio: mark tests as requiring asyncio",
|
||||
"compile: mark placeholder test used to compile integration tests without running them",
|
||||
]
|
||||
asyncio_mode = "auto"
|
17
libs/partners/mistralai/scripts/check_imports.py
Normal file
17
libs/partners/mistralai/scripts/check_imports.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import sys
|
||||
import traceback
|
||||
from importlib.machinery import SourceFileLoader
|
||||
|
||||
if __name__ == "__main__":
|
||||
files = sys.argv[1:]
|
||||
has_failure = False
|
||||
for file in files:
|
||||
try:
|
||||
SourceFileLoader("x", file).load_module()
|
||||
except Exception:
|
||||
has_faillure = True
|
||||
print(file)
|
||||
traceback.print_exc()
|
||||
print()
|
||||
|
||||
sys.exit(1 if has_failure else 0)
|
27
libs/partners/mistralai/scripts/check_pydantic.sh
Executable file
27
libs/partners/mistralai/scripts/check_pydantic.sh
Executable file
@@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This script searches for lines starting with "import pydantic" or "from pydantic"
|
||||
# in tracked files within a Git repository.
|
||||
#
|
||||
# Usage: ./scripts/check_pydantic.sh /path/to/repository
|
||||
|
||||
# Check if a path argument is provided
|
||||
if [ $# -ne 1 ]; then
|
||||
echo "Usage: $0 /path/to/repository"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
repository_path="$1"
|
||||
|
||||
# Search for lines matching the pattern within the specified repository
|
||||
result=$(git -C "$repository_path" grep -E '^import pydantic|^from pydantic')
|
||||
|
||||
# Check if any matching lines were found
|
||||
if [ -n "$result" ]; then
|
||||
echo "ERROR: The following lines need to be updated:"
|
||||
echo "$result"
|
||||
echo "Please replace the code with an import from langchain_core.pydantic_v1."
|
||||
echo "For example, replace 'from pydantic import BaseModel'"
|
||||
echo "with 'from langchain_core.pydantic_v1 import BaseModel'"
|
||||
exit 1
|
||||
fi
|
18
libs/partners/mistralai/scripts/lint_imports.sh
Executable file
18
libs/partners/mistralai/scripts/lint_imports.sh
Executable file
@@ -0,0 +1,18 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -eu
|
||||
|
||||
# Initialize a variable to keep track of errors
|
||||
errors=0
|
||||
|
||||
# make sure not importing from langchain or langchain_experimental
|
||||
git --no-pager grep '^from langchain\.' . && errors=$((errors+1))
|
||||
git --no-pager grep '^from langchain_experimental\.' . && errors=$((errors+1))
|
||||
git --no-pager grep '^from langchain_community\.' . && errors=$((errors+1))
|
||||
|
||||
# Decide on an exit status based on the errors
|
||||
if [ "$errors" -gt 0 ]; then
|
||||
exit 1
|
||||
else
|
||||
exit 0
|
||||
fi
|
0
libs/partners/mistralai/tests/__init__.py
Normal file
0
libs/partners/mistralai/tests/__init__.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""Test ChatMistral chat model."""
|
||||
from langchain_mistralai.chat_models import ChatMistralAI
|
||||
|
||||
|
||||
def test_stream() -> None:
|
||||
"""Test streaming tokens from ChatMistralAI."""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
for token in llm.stream("I'm Pickle Rick"):
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
|
||||
async def test_astream() -> None:
|
||||
"""Test streaming tokens from ChatMistralAI."""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
async for token in llm.astream("I'm Pickle Rick"):
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
|
||||
async def test_abatch() -> None:
|
||||
"""Test streaming tokens from ChatMistralAI"""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
||||
for token in result:
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
|
||||
async def test_abatch_tags() -> None:
|
||||
"""Test batch tokens from ChatMistralAI"""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
result = await llm.abatch(
|
||||
["I'm Pickle Rick", "I'm not Pickle Rick"], config={"tags": ["foo"]}
|
||||
)
|
||||
for token in result:
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
|
||||
def test_batch() -> None:
|
||||
"""Test batch tokens from ChatMistralAI"""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
|
||||
for token in result:
|
||||
assert isinstance(token.content, str)
|
||||
|
||||
|
||||
async def test_ainvoke() -> None:
|
||||
"""Test invoke tokens from ChatMistralAI"""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
|
||||
assert isinstance(result.content, str)
|
||||
|
||||
|
||||
def test_invoke() -> None:
|
||||
"""Test invoke tokens from ChatMistralAI"""
|
||||
llm = ChatMistralAI()
|
||||
|
||||
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
|
||||
assert isinstance(result.content, str)
|
@@ -0,0 +1,7 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.compile
|
||||
def test_placeholder() -> None:
|
||||
"""Used for compiling integration tests without running any real tests."""
|
||||
pass
|
65
libs/partners/mistralai/tests/unit_tests/test_chat_models.py
Normal file
65
libs/partners/mistralai/tests/unit_tests/test_chat_models.py
Normal file
@@ -0,0 +1,65 @@
|
||||
"""Test MistralAI Chat API wrapper."""
|
||||
import os
|
||||
|
||||
import pytest
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
|
||||
# TODO: Remove 'type: ignore' once mistralai has stubs or py.typed marker.
|
||||
from mistralai.models.chat_completion import ( # type: ignore[import]
|
||||
ChatMessage as MistralChatMessage,
|
||||
)
|
||||
|
||||
from langchain_mistralai.chat_models import ( # type: ignore[import]
|
||||
ChatMistralAI,
|
||||
_convert_message_to_mistral_chat_message,
|
||||
)
|
||||
|
||||
os.environ["MISTRAL_API_KEY"] = "foo"
|
||||
|
||||
|
||||
@pytest.mark.requires("mistralai")
|
||||
def test_mistralai_model_param() -> None:
|
||||
llm = ChatMistralAI(model="foo")
|
||||
assert llm.model == "foo"
|
||||
|
||||
|
||||
@pytest.mark.requires("mistralai")
|
||||
def test_mistralai_initialization() -> None:
|
||||
"""Test ChatMistralAI initialization."""
|
||||
# Verify that ChatMistralAI can be initialized using a secret key provided
|
||||
# as a parameter rather than an environment variable.
|
||||
ChatMistralAI(model="test", mistral_api_key="test")
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("message", "expected"),
|
||||
[
|
||||
(
|
||||
SystemMessage(content="Hello"),
|
||||
MistralChatMessage(role="system", content="Hello"),
|
||||
),
|
||||
(
|
||||
HumanMessage(content="Hello"),
|
||||
MistralChatMessage(role="user", content="Hello"),
|
||||
),
|
||||
(
|
||||
AIMessage(content="Hello"),
|
||||
MistralChatMessage(role="assistant", content="Hello"),
|
||||
),
|
||||
(
|
||||
ChatMessage(role="assistant", content="Hello"),
|
||||
MistralChatMessage(role="assistant", content="Hello"),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_convert_message_to_mistral_chat_message(
|
||||
message: BaseMessage, expected: MistralChatMessage
|
||||
) -> None:
|
||||
result = _convert_message_to_mistral_chat_message(message)
|
||||
assert result == expected
|
7
libs/partners/mistralai/tests/unit_tests/test_imports.py
Normal file
7
libs/partners/mistralai/tests/unit_tests/test_imports.py
Normal file
@@ -0,0 +1,7 @@
|
||||
from langchain_mistralai import __all__
|
||||
|
||||
EXPECTED_ALL = ["ChatMistralAI"]
|
||||
|
||||
|
||||
def test_all_imports() -> None:
|
||||
assert sorted(EXPECTED_ALL) == sorted(__all__)
|
Reference in New Issue
Block a user