feat(llms): add support for vLLM (#8806)

Hello langchain maintainers, 
this PR aims at integrating
[vllm](https://vllm.readthedocs.io/en/latest/#) into langchain. This PR
closes #8729.

This feature clearly depends on `vllm`, but I've seen other models
supported here depend on packages that are not included in the
pyproject.toml (e.g. `gpt4all`, `text-generation`) so I thought it was
the case for this as well.

@hwchase17, @baskaryan

---------

Co-authored-by: Harrison Chase <hw.chase.17@gmail.com>
This commit is contained in:
Massimiliano Pronesti
2023-08-07 16:32:02 +02:00
committed by GitHub
parent 100d9ce4c7
commit a616e19975
3 changed files with 322 additions and 0 deletions

View File

@@ -76,6 +76,7 @@ from langchain.llms.stochasticai import StochasticAI
from langchain.llms.textgen import TextGen
from langchain.llms.tongyi import Tongyi
from langchain.llms.vertexai import VertexAI
from langchain.llms.vllm import VLLM
from langchain.llms.writer import Writer
from langchain.llms.xinference import Xinference
@@ -139,6 +140,7 @@ __all__ = [
"StochasticAI",
"Tongyi",
"VertexAI",
"VLLM",
"Writer",
"OctoAIEndpoint",
"Xinference",
@@ -198,6 +200,7 @@ type_to_cls_dict: Dict[str, Type[BaseLLM]] = {
"vertexai": VertexAI,
"openllm": OpenLLM,
"openllm_client": OpenLLM,
"vllm": VLLM,
"writer": Writer,
"xinference": Xinference,
}

View File

@@ -0,0 +1,123 @@
from typing import Any, Dict, List, Optional
from pydantic import root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.schema.output import Generation, LLMResult
class VLLM(BaseLLM):
model: str = ""
"""The name or path of a HuggingFace Transformers model."""
tensor_parallel_size: Optional[int] = 1
"""The number of GPUs to use for distributed execution with tensor parallelism."""
trust_remote_code: Optional[bool] = False
"""Trust remote code (e.g., from HuggingFace) when downloading the model
and tokenizer."""
n: int = 1
"""Number of output sequences to return for the given prompt."""
best_of: Optional[int] = None
"""Number of output sequences that are generated from the prompt."""
presence_penalty: float = 0.0
"""Float that penalizes new tokens based on whether they appear in the
generated text so far"""
frequency_penalty: float = 0.0
"""Float that penalizes new tokens based on their frequency in the
generated text so far"""
temperature: float = 1.0
"""Float that controls the randomness of the sampling."""
top_p: float = 1.0
"""Float that controls the cumulative probability of the top tokens to consider."""
top_k: int = -1
"""Integer that controls the number of top tokens to consider."""
use_beam_search: bool = False
"""Whether to use beam search instead of sampling."""
stop: Optional[List[str]] = None
"""List of strings that stop the generation when they are generated."""
ignore_eos: bool = False
"""Whether to ignore the EOS token and continue generating tokens after
the EOS token is generated."""
max_new_tokens: int = 512
"""Maximum number of tokens to generate per output sequence."""
client: Any #: :meta private:
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that python package exists in environment."""
try:
from vllm import LLM as VLLModel
except ImportError:
raise ImportError(
"Could not import vllm python package. "
"Please install it with `pip install vllm`."
)
values["client"] = VLLModel(
model=values["model"],
tensor_parallel_size=values["tensor_parallel_size"],
trust_remote_code=values["trust_remote_code"],
)
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling vllm."""
return {
"n": self.n,
"best_of": self.best_of,
"max_tokens": self.max_new_tokens,
"top_k": self.top_k,
"top_p": self.top_p,
"temperature": self.temperature,
"presence_penalty": self.presence_penalty,
"frequency_penalty": self.frequency_penalty,
"stop": self.stop,
"ignore_eos": self.ignore_eos,
"use_beam_search": self.use_beam_search,
}
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Run the LLM on the given prompt and input."""
from vllm import SamplingParams
# build sampling parameters
params = {**self._default_params, **kwargs, "stop": stop}
sampling_params = SamplingParams(**params)
# call the model
outputs = self.client.generate(prompts, sampling_params)
generations = []
for output in outputs:
text = output.outputs[0].text
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "vllm"