qdrant: test new QdrantVectorStore (#24165)

## Description

This PR adds integration tests to follow up on #24164.

By default, the tests use an in-memory instance.

To run the full suite of tests, with both in-memory and Qdrant server:

```
$ docker run -p 6333:6333 qdrant/qdrant

$ make test

$ make integration_test
```

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Anush
2024-07-13 05:29:30 +05:30
committed by GitHub
parent f071581aea
commit a653b209ba
8 changed files with 1021 additions and 2 deletions

View File

@@ -4,6 +4,8 @@ import requests # type: ignore
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_qdrant import SparseEmbeddings, SparseVector
def qdrant_running_locally() -> bool:
"""Check if Qdrant is running at http://localhost:6333."""
@@ -55,3 +57,29 @@ class ConsistentFakeEmbeddings(Embeddings):
"""Return consistent embeddings for the text, if seen before, or a constant
one if the text is unknown."""
return self.embed_documents([text])[0]
class ConsistentFakeSparseEmbeddings(SparseEmbeddings):
"""Fake sparse embeddings which remembers all the texts seen so far "
"to return consistent vectors for the same texts."""
def __init__(self, dimensionality: int = 25) -> None:
self.known_texts: List[str] = []
self.dimensionality = 25
def embed_documents(self, texts: List[str]) -> List[SparseVector]:
"""Return consistent embeddings for each text seen so far."""
out_vectors = []
for text in texts:
if text not in self.known_texts:
self.known_texts.append(text)
index = self.known_texts.index(text)
indices = [i + index for i in range(self.dimensionality)]
values = [1.0] * (self.dimensionality - 1) + [float(index)]
out_vectors.append(SparseVector(indices=indices, values=values))
return out_vectors
def embed_query(self, text: str) -> SparseVector:
"""Return consistent embeddings for the text, "
"if seen before, or a constant one if the text is unknown."""
return self.embed_documents([text])[0]