mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 21:47:12 +00:00
Harrison/myscale (#3352)
Co-authored-by: Fangrui Liu <fangruil@moqi.ai> Co-authored-by: 刘 方瑞 <fangrui.liu@outlook.com> Co-authored-by: Fangrui.Liu <fangrui.liu@ubc.ca>
This commit is contained in:
108
tests/integration_tests/vectorstores/test_myscale.py
Normal file
108
tests/integration_tests/vectorstores/test_myscale.py
Normal file
@@ -0,0 +1,108 @@
|
||||
"""Test MyScale functionality."""
|
||||
import pytest
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.vectorstores import MyScale, MyScaleSettings
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
|
||||
def test_myscale() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale"
|
||||
docsearch = MyScale.from_texts(texts, FakeEmbeddings(), config=config)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"_dummy": 0})]
|
||||
docsearch.drop()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_myscale_async() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale_async"
|
||||
docsearch = MyScale.from_texts(
|
||||
texts=texts, embedding=FakeEmbeddings(), config=config
|
||||
)
|
||||
output = await docsearch.asimilarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"_dummy": 0})]
|
||||
docsearch.drop()
|
||||
|
||||
|
||||
def test_myscale_with_metadatas() -> None:
|
||||
"""Test end to end construction and search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale_with_metadatas"
|
||||
docsearch = MyScale.from_texts(
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
config=config,
|
||||
metadatas=metadatas,
|
||||
)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"page": "0"})]
|
||||
docsearch.drop()
|
||||
|
||||
|
||||
def test_myscale_with_metadatas_with_relevance_scores() -> None:
|
||||
"""Test end to end construction and scored search."""
|
||||
texts = ["foo", "bar", "baz"]
|
||||
metadatas = [{"page": str(i)} for i in range(len(texts))]
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale_with_metadatas_with_relevance_scores"
|
||||
docsearch = MyScale.from_texts(
|
||||
texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config
|
||||
)
|
||||
output = docsearch.similarity_search_with_relevance_scores("foo", k=1)
|
||||
assert output[0][0] == Document(page_content="foo", metadata={"page": "0"})
|
||||
docsearch.drop()
|
||||
|
||||
|
||||
def test_myscale_search_filter() -> None:
|
||||
"""Test end to end construction and search with metadata filtering."""
|
||||
texts = ["far", "bar", "baz"]
|
||||
metadatas = [{"first_letter": "{}".format(text[0])} for text in texts]
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale_search_filter"
|
||||
docsearch = MyScale.from_texts(
|
||||
texts=texts, embedding=FakeEmbeddings(), metadatas=metadatas, config=config
|
||||
)
|
||||
output = docsearch.similarity_search(
|
||||
"far", k=1, where_str=f"{docsearch.metadata_column}.first_letter='f'"
|
||||
)
|
||||
assert output == [Document(page_content="far", metadata={"first_letter": "f"})]
|
||||
output = docsearch.similarity_search(
|
||||
"bar", k=1, where_str=f"{docsearch.metadata_column}.first_letter='b'"
|
||||
)
|
||||
assert output == [Document(page_content="bar", metadata={"first_letter": "b"})]
|
||||
docsearch.drop()
|
||||
|
||||
|
||||
def test_myscale_with_persistence() -> None:
|
||||
"""Test end to end construction and search, with persistence."""
|
||||
config = MyScaleSettings()
|
||||
config.table = "test_myscale_with_persistence"
|
||||
texts = [
|
||||
"foo",
|
||||
"bar",
|
||||
"baz",
|
||||
]
|
||||
docsearch = MyScale.from_texts(
|
||||
texts=texts, embedding=FakeEmbeddings(), config=config
|
||||
)
|
||||
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"_dummy": 0})]
|
||||
|
||||
# Get a new VectorStore with same config
|
||||
# it will reuse the table spontaneously
|
||||
# unless you drop it
|
||||
docsearch = MyScale(embedding=FakeEmbeddings(), config=config)
|
||||
output = docsearch.similarity_search("foo", k=1)
|
||||
|
||||
# Clean up
|
||||
docsearch.drop()
|
Reference in New Issue
Block a user