community[minor]: [PebbloSafeLoader] Implement content-size-based batching (#24871)

- **Title:** [PebbloSafeLoader] Implement content-size-based batching in
the classification flow(loader/doc API)
- **Description:** 
- Implemented content-size-based batching in the loader/doc API, set to
100KB with no external configuration option, intentionally hard-coded to
prevent timeouts.
    - Remove unused field(pb_id) from doc_metadata
- **Issue:** NA
- **Dependencies:** NA
- **Add tests and docs:** Updated
This commit is contained in:
Rajendra Kadam
2024-07-31 18:40:28 +05:30
committed by GitHub
parent 096b66db4a
commit a6add89bd4
3 changed files with 74 additions and 11 deletions

View File

@@ -4,7 +4,7 @@ import logging
import os
import pathlib
import platform
from typing import Optional, Tuple
from typing import List, Optional, Tuple
from langchain_core.documents import Document
from langchain_core.env import get_runtime_environment
@@ -20,6 +20,7 @@ PEBBLO_CLOUD_URL = os.getenv("PEBBLO_CLOUD_URL", "https://api.daxa.ai")
LOADER_DOC_URL = "/v1/loader/doc"
APP_DISCOVER_URL = "/v1/app/discover"
BATCH_SIZE_BYTES = 100 * 1024 # 100 KB
# Supported loaders for Pebblo safe data loading
file_loader = [
@@ -301,3 +302,43 @@ def get_ip() -> str:
except Exception:
public_ip = socket.gethostbyname("localhost")
return public_ip
def generate_size_based_batches(
docs: List[Document], max_batch_size: int = 100 * 1024
) -> List[List[Document]]:
"""
Generate batches of documents based on page_content size.
Args:
docs: List of documents to be batched.
max_batch_size: Maximum size of each batch in bytes. Defaults to 100*1024(100KB)
Returns:
List[List[Document]]: List of batches of documents
"""
batches: List[List[Document]] = []
current_batch: List[Document] = []
current_batch_size: int = 0
for doc in docs:
# Calculate the size of the document in bytes
doc_size: int = len(doc.page_content.encode("utf-8"))
if doc_size > max_batch_size:
# If a single document exceeds the max batch size, send it as a single batch
batches.append([doc])
else:
if current_batch_size + doc_size > max_batch_size:
# If adding this document exceeds the max batch size, start a new batch
batches.append(current_batch)
current_batch = []
current_batch_size = 0
# Add document to the current batch
current_batch.append(doc)
current_batch_size += doc_size
# Add the last batch if it has documents
if current_batch:
batches.append(current_batch)
return batches