mirror of
https://github.com/hwchase17/langchain.git
synced 2025-06-25 08:03:39 +00:00
langchain[patch]: Add async methods to VectorstoreIndexCreator (#19582)
This commit is contained in:
parent
241774012a
commit
a7274f006e
@ -43,7 +43,22 @@ class VectorStoreIndexWrapper(BaseModel):
|
||||
chain = RetrievalQA.from_chain_type(
|
||||
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
|
||||
)
|
||||
return chain.run(question)
|
||||
return chain.invoke({chain.input_key: question})[chain.output_key]
|
||||
|
||||
async def aquery(
|
||||
self,
|
||||
question: str,
|
||||
llm: Optional[BaseLanguageModel] = None,
|
||||
retriever_kwargs: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Query the vectorstore."""
|
||||
llm = llm or OpenAI(temperature=0)
|
||||
retriever_kwargs = retriever_kwargs or {}
|
||||
chain = RetrievalQA.from_chain_type(
|
||||
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
|
||||
)
|
||||
return (await chain.ainvoke({chain.input_key: question}))[chain.output_key]
|
||||
|
||||
def query_with_sources(
|
||||
self,
|
||||
@ -58,7 +73,22 @@ class VectorStoreIndexWrapper(BaseModel):
|
||||
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
||||
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
|
||||
)
|
||||
return chain({chain.question_key: question})
|
||||
return chain.invoke({chain.question_key: question})
|
||||
|
||||
async def aquery_with_sources(
|
||||
self,
|
||||
question: str,
|
||||
llm: Optional[BaseLanguageModel] = None,
|
||||
retriever_kwargs: Optional[Dict[str, Any]] = None,
|
||||
**kwargs: Any,
|
||||
) -> dict:
|
||||
"""Query the vectorstore and get back sources."""
|
||||
llm = llm or OpenAI(temperature=0)
|
||||
retriever_kwargs = retriever_kwargs or {}
|
||||
chain = RetrievalQAWithSourcesChain.from_chain_type(
|
||||
llm, retriever=self.vectorstore.as_retriever(**retriever_kwargs), **kwargs
|
||||
)
|
||||
return await chain.ainvoke({chain.question_key: question})
|
||||
|
||||
|
||||
class VectorstoreIndexCreator(BaseModel):
|
||||
@ -82,6 +112,14 @@ class VectorstoreIndexCreator(BaseModel):
|
||||
docs.extend(loader.load())
|
||||
return self.from_documents(docs)
|
||||
|
||||
async def afrom_loaders(self, loaders: List[BaseLoader]) -> VectorStoreIndexWrapper:
|
||||
"""Create a vectorstore index from loaders."""
|
||||
docs = []
|
||||
for loader in loaders:
|
||||
async for doc in loader.alazy_load():
|
||||
docs.append(doc)
|
||||
return await self.afrom_documents(docs)
|
||||
|
||||
def from_documents(self, documents: List[Document]) -> VectorStoreIndexWrapper:
|
||||
"""Create a vectorstore index from documents."""
|
||||
sub_docs = self.text_splitter.split_documents(documents)
|
||||
@ -89,3 +127,13 @@ class VectorstoreIndexCreator(BaseModel):
|
||||
sub_docs, self.embedding, **self.vectorstore_kwargs
|
||||
)
|
||||
return VectorStoreIndexWrapper(vectorstore=vectorstore)
|
||||
|
||||
async def afrom_documents(
|
||||
self, documents: List[Document]
|
||||
) -> VectorStoreIndexWrapper:
|
||||
"""Create a vectorstore index from documents."""
|
||||
sub_docs = self.text_splitter.split_documents(documents)
|
||||
vectorstore = await self.vectorstore_cls.afrom_documents(
|
||||
sub_docs, self.embedding, **self.vectorstore_kwargs
|
||||
)
|
||||
return VectorStoreIndexWrapper(vectorstore=vectorstore)
|
||||
|
Loading…
Reference in New Issue
Block a user