[docs]: vector store integration pages (#24858)

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Isaac Francisco
2024-08-06 10:20:27 -07:00
committed by GitHub
parent 2c798622cd
commit a72fddbf8d
29 changed files with 5649 additions and 4436 deletions

View File

@@ -45,25 +45,142 @@ DEFAULT_INSERT_BATCH_SIZE = 100_000
class MongoDBAtlasVectorSearch(VectorStore):
"""`MongoDB Atlas Vector Search` vector store.
"""MongoDBAtlas vector store integration.
To use, you should have both:
- the ``pymongo`` python package installed
- a connection string associated with a MongoDB Atlas Cluster having deployed an
Atlas Search index
Setup:
Install ``langchain-mongodb`` and ``pymongo`` and setup a MongoDB Atlas cluster (read through [this guide](https://www.mongodb.com/docs/manual/reference/connection-string/) to do so).
.. code-block:: bash
pip install -qU langchain-mongodb pymongo
Example:
.. code-block:: python
from langchain_mongodb import MongoDBAtlasVectorSearch
from langchain_openai import OpenAIEmbeddings
from pymongo import MongoClient
import getpass
mongo_client = MongoClient("<YOUR-CONNECTION-STRING>")
collection = mongo_client["<db_name>"]["<collection_name>"]
embeddings = OpenAIEmbeddings()
vectorstore = MongoDBAtlasVectorSearch(collection, embeddings)
"""
MONGODB_ATLAS_CLUSTER_URI = getpass.getpass("MongoDB Atlas Cluster URI:")
Key init args — indexing params:
embedding: Embeddings
Embedding function to use.
Key init args — client params:
collection: Collection
MongoDB collection to use.
index_name: str
Name of the Atlas Search index.
Instantiate:
.. code-block:: python
from pymongo import MongoClient
from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch
from pymongo import MongoClient
from langchain_openai import OpenAIEmbeddings
# initialize MongoDB python client
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "langchain_test_db"
COLLECTION_NAME = "langchain_test_vectorstores"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain-test-index-vectorstores"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
vector_store = MongoDBAtlasVectorSearch(
collection=MONGODB_COLLECTION,
embedding=OpenAIEmbeddings(),
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
relevance_score_fn="cosine",
)
Add Documents:
.. code-block:: python
from langchain_core.documents import Document
document_1 = Document(page_content="foo", metadata={"baz": "bar"})
document_2 = Document(page_content="thud", metadata={"bar": "baz"})
document_3 = Document(page_content="i will be deleted :(")
documents = [document_1, document_2, document_3]
ids = ["1", "2", "3"]
vector_store.add_documents(documents=documents, ids=ids)
Delete Documents:
.. code-block:: python
vector_store.delete(ids=["3"])
Search:
.. code-block:: python
results = vector_store.similarity_search(query="thud",k=1)
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* thud [{'_id': '2', 'baz': 'baz'}]
Search with filter:
.. code-block:: python
results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
for doc in results:
print(f"* {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* thud [{'_id': '2', 'baz': 'baz'}]
Search with score:
.. code-block:: python
results = vector_store.similarity_search_with_score(query="qux",k=1)
for doc, score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.916096] foo [{'_id': '1', 'baz': 'bar'}]
Async:
.. code-block:: python
# add documents
# await vector_store.aadd_documents(documents=documents, ids=ids)
# delete documents
# await vector_store.adelete(ids=["3"])
# search
# results = vector_store.asimilarity_search(query="thud",k=1)
# search with score
results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
for doc,score in results:
print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
.. code-block:: python
* [SIM=0.916096] foo [{'_id': '1', 'baz': 'bar'}]
Use as Retriever:
.. code-block:: python
retriever = vector_store.as_retriever(
search_type="mmr",
search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
)
retriever.invoke("thud")
.. code-block:: python
[Document(metadata={'_id': '2', 'embedding': [-0.01850726455450058, -0.0014740974875167012, -0.009762819856405258, ...], 'baz': 'baz'}, page_content='thud')]
""" # noqa: E501
def __init__(
self,