mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-08 04:25:46 +00:00
ibm: Add support for Chat Models (#22979)
This commit is contained in:
parent
16c59118eb
commit
a78ccb993c
585
docs/docs/integrations/chat/ibm_watsonx.ipynb
Normal file
585
docs/docs/integrations/chat/ibm_watsonx.ipynb
Normal file
@ -0,0 +1,585 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "raw",
|
||||
"id": "1c95cd76",
|
||||
"metadata": {
|
||||
"vscode": {
|
||||
"languageId": "raw"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"---\n",
|
||||
"sidebar_label: IBM watsonx.ai\n",
|
||||
"---"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "70996d8a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# ChatWatsonx\n",
|
||||
"\n",
|
||||
">ChatWatsonx is a wrapper for IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) foundation models.\n",
|
||||
"\n",
|
||||
"The aim of these examples is to show how to communicate with `watsonx.ai` models using `LangChain` LLMs API."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ef7b088a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Overview\n",
|
||||
"\n",
|
||||
"### Integration details\n",
|
||||
"| Class | Package | Local | Serializable | [JS support](https://js.langchain.com/v0.2/docs/integrations/chat/openai) | Package downloads | Package latest |\n",
|
||||
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| [ChatWatsonx](https://api.python.langchain.com/en/latest/ibm_api_reference.html) | [langchain-ibm](https://api.python.langchain.com/en/latest/ibm_api_reference.html) | ❌ | ❌ | ❌ |  |  |\n",
|
||||
"\n",
|
||||
"### Model features\n",
|
||||
"| [Tool calling](/docs/how_to/tool_calling/) | [Structured output](/docs/how_to/structured_output/) | JSON mode | Image input | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
|
||||
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
|
||||
"| ✅ | ✅ | ❌ | ❌ | ❌ | ❌ | ✅ | ❌ | ✅ | ❌ | "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f406e092",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Setup\n",
|
||||
"\n",
|
||||
"To access IBM watsonx.ai models you'll need to create an IBM watsonx.ai account, get an API key, and install the `langchain-ibm` integration package.\n",
|
||||
"\n",
|
||||
"### Credentials\n",
|
||||
"\n",
|
||||
"The cell below defines the credentials required to work with watsonx Foundation Model inferencing.\n",
|
||||
"\n",
|
||||
"**Action:** Provide the IBM Cloud user API key. For details, see\n",
|
||||
"[Managing user API keys](https://cloud.ibm.com/docs/account?topic=account-userapikey&interface=ui)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "11d572a1",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"from getpass import getpass\n",
|
||||
"\n",
|
||||
"watsonx_api_key = getpass()\n",
|
||||
"os.environ[\"WATSONX_APIKEY\"] = watsonx_api_key"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c59782a7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Additionally you are able to pass additional secrets as an environment variable. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f98c573c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import os\n",
|
||||
"\n",
|
||||
"os.environ[\"WATSONX_URL\"] = \"your service instance url\"\n",
|
||||
"os.environ[\"WATSONX_TOKEN\"] = \"your token for accessing the CPD cluster\"\n",
|
||||
"os.environ[\"WATSONX_PASSWORD\"] = \"your password for accessing the CPD cluster\"\n",
|
||||
"os.environ[\"WATSONX_USERNAME\"] = \"your username for accessing the CPD cluster\"\n",
|
||||
"os.environ[\"WATSONX_INSTANCE_ID\"] = \"your instance_id for accessing the CPD cluster\""
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b3dc9176",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Installation\n",
|
||||
"\n",
|
||||
"The LangChain IBM integration lives in the `langchain-ibm` package:"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "387eda86",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip install -qU langchain-ibm"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e36acbef",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Instantiation\n",
|
||||
"\n",
|
||||
"You might need to adjust model `parameters` for different models or tasks. For details, refer to [Available MetaNames](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#metanames.GenTextParamsMetaNames)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "407cd500",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"parameters = {\n",
|
||||
" \"decoding_method\": \"sample\",\n",
|
||||
" \"max_new_tokens\": 100,\n",
|
||||
" \"min_new_tokens\": 1,\n",
|
||||
" \"stop_sequences\": [\".\"],\n",
|
||||
"}"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2b586538",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Initialize the `WatsonxLLM` class with the previously set parameters.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"**Note**: \n",
|
||||
"\n",
|
||||
"- To provide context for the API call, you must pass the `project_id` or `space_id`. To get your project or space ID, open your project or space, go to the **Manage** tab, and click **General**. For more information see: [Project documentation](https://www.ibm.com/docs/en/watsonx-as-a-service?topic=projects) or [Deployment space documentation](https://www.ibm.com/docs/en/watsonx/saas?topic=spaces-creating-deployment).\n",
|
||||
"- Depending on the region of your provisioned service instance, use one of the urls listed in [watsonx.ai API Authentication](https://ibm.github.io/watsonx-ai-python-sdk/setup_cloud.html#authentication).\n",
|
||||
"\n",
|
||||
"In this example, we’ll use the `project_id` and Dallas URL.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"You need to specify the `model_id` that will be used for inferencing. You can find the list of all the available models in [Supported foundation models](https://ibm.github.io/watsonx-ai-python-sdk/fm_model.html#ibm_watsonx_ai.foundation_models.utils.enums.ModelTypes)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "98371396",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_ibm import ChatWatsonx\n",
|
||||
"\n",
|
||||
"chat = ChatWatsonx(\n",
|
||||
" model_id=\"ibm/granite-13b-chat-v2\",\n",
|
||||
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
|
||||
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
|
||||
" params=parameters,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2202f4e0",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Alternatively, you can use Cloud Pak for Data credentials. For details, see [watsonx.ai software setup](https://ibm.github.io/watsonx-ai-python-sdk/setup_cpd.html). "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "243ecccb",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat = ChatWatsonx(\n",
|
||||
" model_id=\"ibm/granite-13b-chat-v2\",\n",
|
||||
" url=\"PASTE YOUR URL HERE\",\n",
|
||||
" username=\"PASTE YOUR USERNAME HERE\",\n",
|
||||
" password=\"PASTE YOUR PASSWORD HERE\",\n",
|
||||
" instance_id=\"openshift\",\n",
|
||||
" version=\"4.8\",\n",
|
||||
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
|
||||
" params=parameters,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "96ed13d4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Instead of `model_id`, you can also pass the `deployment_id` of the previously tuned model. The entire model tuning workflow is described in [Working with TuneExperiment and PromptTuner](https://ibm.github.io/watsonx-ai-python-sdk/pt_working_with_class_and_prompt_tuner.html)."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "08e66c88",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"chat = ChatWatsonx(\n",
|
||||
" deployment_id=\"PASTE YOUR DEPLOYMENT_ID HERE\",\n",
|
||||
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
|
||||
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
|
||||
" params=parameters,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f571001d",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Invocation\n",
|
||||
"\n",
|
||||
"To obtain completions, you can call the model directly using a string prompt."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 22,
|
||||
"id": "beea2b5b",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content=\"Je t'aime pour écouter la Rock.\", response_metadata={'token_usage': {'generated_token_count': 12, 'input_token_count': 28}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-05b305ce-5401-4a10-b557-41a4b15c7f6f-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 22,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Invocation\n",
|
||||
"\n",
|
||||
"messages = [\n",
|
||||
" (\"system\", \"You are a helpful assistant that translates English to French.\"),\n",
|
||||
" (\n",
|
||||
" \"human\",\n",
|
||||
" \"I love you for listening to Rock.\",\n",
|
||||
" ),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"chat.invoke(messages)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 41,
|
||||
"id": "8ab1a25a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Sure, I can help you with that! Horses are large, powerful mammals that belong to the family Equidae.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-391776ff-3b38-4768-91e8-ff64177149e5-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 41,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# Invocation multiple chat\n",
|
||||
"from langchain_core.messages import (\n",
|
||||
" HumanMessage,\n",
|
||||
" SystemMessage,\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"system_message = SystemMessage(\n",
|
||||
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
|
||||
")\n",
|
||||
"human_message = HumanMessage(content=\"horse\")\n",
|
||||
"\n",
|
||||
"chat.invoke([system_message, human_message])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "20e4b568",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Chaining\n",
|
||||
"Create `ChatPromptTemplate` objects which will be responsible for creating a random question."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "dd919925",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.prompts import ChatPromptTemplate\n",
|
||||
"\n",
|
||||
"system = (\n",
|
||||
" \"You are a helpful assistant that translates {input_language} to {output_language}.\"\n",
|
||||
")\n",
|
||||
"human = \"{input}\"\n",
|
||||
"prompt = ChatPromptTemplate.from_messages([(\"system\", system), (\"human\", human)])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a013a53",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Provide a inputs and run the chain."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "68160377",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='Ich liebe Python.', response_metadata={'token_usage': {'generated_token_count': 5, 'input_token_count': 23}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-1b1ccf5d-0e33-46f2-a087-e2a136ba1fb7-0')"
|
||||
]
|
||||
},
|
||||
"execution_count": 18,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"chain = prompt | chat\n",
|
||||
"chain.invoke(\n",
|
||||
" {\n",
|
||||
" \"input_language\": \"English\",\n",
|
||||
" \"output_language\": \"German\",\n",
|
||||
" \"input\": \"I love Python\",\n",
|
||||
" }\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d2c9da33",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Streaming the Model output \n",
|
||||
"\n",
|
||||
"You can stream the model output."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3f63166a",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"The moon is a natural satellite of the Earth, and it has been a source of fascination for humans for centuries."
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"system_message = SystemMessage(\n",
|
||||
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
|
||||
")\n",
|
||||
"human_message = HumanMessage(content=\"moon\")\n",
|
||||
"\n",
|
||||
"for chunk in chat.stream([system_message, human_message]):\n",
|
||||
" print(chunk.content, end=\"\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "5a7a2aa1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Batch the Model output \n",
|
||||
"\n",
|
||||
"You can batch the model output."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 32,
|
||||
"id": "9e948729",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[AIMessage(content='Cats are domestic animals that belong to the Felidae family.', response_metadata={'token_usage': {'generated_token_count': 13, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-71a8bd7a-a1aa-497b-9bdd-a4d6fe1d471a-0'),\n",
|
||||
" AIMessage(content='Dogs are domesticated mammals of the family Canidae, characterized by their adaptability to various environments and social structures.', response_metadata={'token_usage': {'generated_token_count': 24, 'input_token_count': 24}, 'model_name': 'ibm/granite-13b-chat-v2', 'system_fingerprint': '', 'finish_reason': 'stop_sequence'}, id='run-22b7a0cb-e44a-4b68-9921-872f82dcd82b-0')]"
|
||||
]
|
||||
},
|
||||
"execution_count": 32,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"message_1 = [\n",
|
||||
" SystemMessage(\n",
|
||||
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
|
||||
" ),\n",
|
||||
" HumanMessage(content=\"cat\"),\n",
|
||||
"]\n",
|
||||
"message_2 = [\n",
|
||||
" SystemMessage(\n",
|
||||
" content=\"You are a helpful assistant which telling short-info about provided topic.\"\n",
|
||||
" ),\n",
|
||||
" HumanMessage(content=\"dog\"),\n",
|
||||
"]\n",
|
||||
"\n",
|
||||
"chat.batch([message_1, message_2])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c739e1fe",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Tool calling\n",
|
||||
"\n",
|
||||
"### ChatWatsonx.bind_tools()\n",
|
||||
"\n",
|
||||
"Please note that `ChatWatsonx.bind_tools` is on beta state, so right now we only support `mistralai/mixtral-8x7b-instruct-v01` model.\n",
|
||||
"\n",
|
||||
"You should also redefine `max_new_tokens` parameter to get the entire model response. By default `max_new_tokens` is set ot 20."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "328fce76",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_ibm import ChatWatsonx\n",
|
||||
"\n",
|
||||
"parameters = {\"max_new_tokens\": 200}\n",
|
||||
"\n",
|
||||
"chat = ChatWatsonx(\n",
|
||||
" model_id=\"mistralai/mixtral-8x7b-instruct-v01\",\n",
|
||||
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
|
||||
" project_id=\"PASTE YOUR PROJECT_ID HERE\",\n",
|
||||
" params=parameters,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "e1633a73",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from langchain_core.pydantic_v1 import BaseModel, Field\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class GetWeather(BaseModel):\n",
|
||||
" \"\"\"Get the current weather in a given location\"\"\"\n",
|
||||
"\n",
|
||||
" location: str = Field(..., description=\"The city and state, e.g. San Francisco, CA\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"llm_with_tools = chat.bind_tools([GetWeather])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3bf9b8ab",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"AIMessage(content='', additional_kwargs={'function_call': {'type': 'function'}, 'tool_calls': [{'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"Los Angeles\"}'}, 'id': None}, {'type': 'function', 'function': {'name': 'GetWeather', 'arguments': '{\"location\": \"New York\"}'}, 'id': None}]}, response_metadata={'token_usage': {'generated_token_count': 99, 'input_token_count': 320}, 'model_name': 'mistralai/mixtral-8x7b-instruct-v01', 'system_fingerprint': '', 'finish_reason': 'eos_token'}, id='run-38627104-f2ac-4edb-8390-d5425fb65979-0', tool_calls=[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None}, {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}])"
|
||||
]
|
||||
},
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_msg = llm_with_tools.invoke(\n",
|
||||
" \"Which city is hotter today: LA or NY?\",\n",
|
||||
")\n",
|
||||
"ai_msg"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "ba03dbf4",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### AIMessage.tool_calls\n",
|
||||
"Notice that the AIMessage has a `tool_calls` attribute. This contains in a standardized ToolCall format that is model-provider agnostic."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "38f10ba7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"[{'name': 'GetWeather', 'args': {'location': 'Los Angeles'}, 'id': None},\n",
|
||||
" {'name': 'GetWeather', 'args': {'location': 'New York'}, 'id': None}]"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"ai_msg.tool_calls"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "9ee72a59",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## API reference\n",
|
||||
"\n",
|
||||
"For detailed documentation of all IBM watsonx.ai features and configurations head to the API reference: https://api.python.langchain.com/en/latest/ibm_api_reference.html"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.10.13"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -28,6 +28,16 @@ import os
|
||||
os.environ["WATSONX_APIKEY"] = "your IBM watsonx.ai api key"
|
||||
```
|
||||
|
||||
## Chat Model
|
||||
|
||||
### ChatWatsonx
|
||||
|
||||
See a [usage example](/docs/integrations/chat/ibm_watsonx).
|
||||
|
||||
```python
|
||||
from langchain_ibm import ChatWatsonx
|
||||
```
|
||||
|
||||
## LLMs
|
||||
|
||||
### WatsonxLLM
|
||||
|
@ -1,4 +1,5 @@
|
||||
from langchain_ibm.chat_models import ChatWatsonx
|
||||
from langchain_ibm.embeddings import WatsonxEmbeddings
|
||||
from langchain_ibm.llms import WatsonxLLM
|
||||
|
||||
__all__ = ["WatsonxLLM", "WatsonxEmbeddings"]
|
||||
__all__ = ["WatsonxLLM", "WatsonxEmbeddings", "ChatWatsonx"]
|
||||
|
869
libs/partners/ibm/langchain_ibm/chat_models.py
Normal file
869
libs/partners/ibm/langchain_ibm/chat_models.py
Normal file
@ -0,0 +1,869 @@
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from operator import itemgetter
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterator,
|
||||
List,
|
||||
Literal,
|
||||
Mapping,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
Type,
|
||||
TypedDict,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
from ibm_watsonx_ai import Credentials # type: ignore
|
||||
from ibm_watsonx_ai.foundation_models import ModelInference # type: ignore
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models import LanguageModelInput
|
||||
from langchain_core.language_models.chat_models import (
|
||||
BaseChatModel,
|
||||
generate_from_stream,
|
||||
)
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
AIMessageChunk,
|
||||
BaseMessage,
|
||||
BaseMessageChunk,
|
||||
ChatMessage,
|
||||
ChatMessageChunk,
|
||||
FunctionMessage,
|
||||
FunctionMessageChunk,
|
||||
HumanMessage,
|
||||
HumanMessageChunk,
|
||||
SystemMessage,
|
||||
SystemMessageChunk,
|
||||
ToolMessage,
|
||||
ToolMessageChunk,
|
||||
convert_to_messages,
|
||||
)
|
||||
from langchain_core.output_parsers import JsonOutputParser, PydanticOutputParser
|
||||
from langchain_core.output_parsers.base import OutputParserLike
|
||||
from langchain_core.output_parsers.openai_tools import (
|
||||
JsonOutputKeyToolsParser,
|
||||
PydanticToolsParser,
|
||||
make_invalid_tool_call,
|
||||
parse_tool_call,
|
||||
)
|
||||
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
|
||||
from langchain_core.prompt_values import ChatPromptValue
|
||||
from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator
|
||||
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
|
||||
from langchain_core.tools import BaseTool
|
||||
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
|
||||
from langchain_core.utils.function_calling import (
|
||||
convert_to_openai_function,
|
||||
convert_to_openai_tool,
|
||||
)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
|
||||
"""Convert a dictionary to a LangChain message.
|
||||
|
||||
Args:
|
||||
_dict: The dictionary.
|
||||
|
||||
Returns:
|
||||
The LangChain message.
|
||||
"""
|
||||
role = _dict.get("role")
|
||||
if role == "user":
|
||||
return HumanMessage(content=_dict.get("generated_text", ""))
|
||||
else:
|
||||
additional_kwargs: Dict = {}
|
||||
tool_calls = []
|
||||
invalid_tool_calls = []
|
||||
try:
|
||||
content = ""
|
||||
|
||||
raw_tool_calls = _dict.get("generated_text")
|
||||
if raw_tool_calls:
|
||||
json_parts = re.split(r"\n\n(?:<blank line>\n\n)?", raw_tool_calls)
|
||||
parsed_raw_tool_calls = [
|
||||
json.loads(part) for part in json_parts if part.strip()
|
||||
]
|
||||
additional_kwargs["tool_calls"] = parsed_raw_tool_calls
|
||||
additional_kwargs["function_call"] = dict(parsed_raw_tool_calls)
|
||||
|
||||
for obj in parsed_raw_tool_calls:
|
||||
b = json.dumps(obj["function"]["arguments"])
|
||||
obj["function"]["arguments"] = b
|
||||
|
||||
for raw_tool_call in parsed_raw_tool_calls:
|
||||
try:
|
||||
raw_tool_call["id"] = "None"
|
||||
tool_calls.append(
|
||||
parse_tool_call(raw_tool_call, return_id=True)
|
||||
)
|
||||
except Exception as e:
|
||||
invalid_tool_calls.append(
|
||||
dict(make_invalid_tool_call(raw_tool_call, str(e)))
|
||||
)
|
||||
except: # noqa: E722
|
||||
content = _dict.get("generated_text", "") or ""
|
||||
|
||||
return AIMessage(
|
||||
content=content,
|
||||
additional_kwargs=additional_kwargs,
|
||||
tool_calls=tool_calls,
|
||||
invalid_tool_calls=invalid_tool_calls,
|
||||
)
|
||||
|
||||
|
||||
def _convert_message_to_dict(message: BaseMessage) -> dict:
|
||||
"""Convert a LangChain message to a dictionary.
|
||||
|
||||
Args:
|
||||
message: The LangChain message.
|
||||
|
||||
Returns:
|
||||
The dictionary.
|
||||
"""
|
||||
message_dict: Dict[str, Any]
|
||||
if isinstance(message, ChatMessage):
|
||||
message_dict = {"role": message.role, "content": message.content}
|
||||
elif isinstance(message, HumanMessage):
|
||||
message_dict = {"role": "user", "content": message.content}
|
||||
elif isinstance(message, AIMessage):
|
||||
message_dict = {"role": "assistant", "content": message.content}
|
||||
if "function_call" in message.additional_kwargs:
|
||||
message_dict["function_call"] = message.additional_kwargs["function_call"]
|
||||
# If function call only, content is None not empty string
|
||||
if message_dict["content"] == "":
|
||||
message_dict["content"] = None
|
||||
if "tool_calls" in message.additional_kwargs:
|
||||
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
|
||||
# If tool calls only, content is None not empty string
|
||||
if message_dict["content"] == "":
|
||||
message_dict["content"] = None
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_dict = {"role": "system", "content": message.content}
|
||||
elif isinstance(message, FunctionMessage):
|
||||
message_dict = {
|
||||
"role": "function",
|
||||
"content": message.content,
|
||||
"name": message.name,
|
||||
}
|
||||
elif isinstance(message, ToolMessage):
|
||||
message_dict = {
|
||||
"role": "tool",
|
||||
"content": message.content,
|
||||
"tool_call_id": "None",
|
||||
}
|
||||
else:
|
||||
raise TypeError(f"Got unknown type {message}")
|
||||
if "name" in message.additional_kwargs:
|
||||
message_dict["name"] = message.additional_kwargs["name"]
|
||||
return message_dict
|
||||
|
||||
|
||||
def _convert_delta_to_message_chunk(
|
||||
_dict: Mapping[str, Any], default_class: Type[BaseMessageChunk]
|
||||
) -> BaseMessageChunk:
|
||||
role = cast(str, _dict.get("role"))
|
||||
content = cast(str, _dict.get("content") or "")
|
||||
additional_kwargs: Dict = {}
|
||||
if _dict.get("function_call"):
|
||||
function_call = dict(_dict["function_call"])
|
||||
if "name" in function_call and function_call["name"] is None:
|
||||
function_call["name"] = ""
|
||||
additional_kwargs["function_call"] = function_call
|
||||
if raw_tool_calls := _dict.get("tool_calls"):
|
||||
additional_kwargs["tool_calls"] = raw_tool_calls
|
||||
try:
|
||||
tool_call_chunks = [
|
||||
{
|
||||
"name": rtc["function"].get("name"),
|
||||
"args": rtc["function"].get("arguments"),
|
||||
"id": rtc.get("id"),
|
||||
"index": rtc["index"],
|
||||
}
|
||||
for rtc in raw_tool_calls
|
||||
]
|
||||
except KeyError:
|
||||
pass
|
||||
else:
|
||||
tool_call_chunks = []
|
||||
|
||||
if role == "user" or default_class == HumanMessageChunk:
|
||||
return HumanMessageChunk(content=content)
|
||||
elif role == "assistant" or default_class == AIMessageChunk:
|
||||
return AIMessageChunk(
|
||||
content=content,
|
||||
additional_kwargs=additional_kwargs,
|
||||
tool_call_chunks=tool_call_chunks,
|
||||
)
|
||||
elif role == "system" or default_class == SystemMessageChunk:
|
||||
return SystemMessageChunk(content=content)
|
||||
elif role == "function" or default_class == FunctionMessageChunk:
|
||||
return FunctionMessageChunk(content=content, name=_dict["name"])
|
||||
elif role == "tool" or default_class == ToolMessageChunk:
|
||||
return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
|
||||
elif role or default_class == ChatMessageChunk:
|
||||
return ChatMessageChunk(content=content, role=role)
|
||||
else:
|
||||
return default_class(content=content) # type: ignore
|
||||
|
||||
|
||||
class _FunctionCall(TypedDict):
|
||||
name: str
|
||||
|
||||
|
||||
class ChatWatsonx(BaseChatModel):
|
||||
"""
|
||||
IBM watsonx.ai large language chat models.
|
||||
|
||||
To use, you should have ``langchain_ibm`` python package installed,
|
||||
and the environment variable ``WATSONX_APIKEY`` set with your API key, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
|
||||
parameters = {
|
||||
GenTextParamsMetaNames.DECODING_METHOD: "sample",
|
||||
GenTextParamsMetaNames.MAX_NEW_TOKENS: 100,
|
||||
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
|
||||
GenTextParamsMetaNames.TEMPERATURE: 0.5,
|
||||
GenTextParamsMetaNames.TOP_K: 50,
|
||||
GenTextParamsMetaNames.TOP_P: 1,
|
||||
}
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
watsonx_llm = ChatWatsonx(
|
||||
model_id="meta-llama/llama-3-70b-instruct",
|
||||
url="https://us-south.ml.cloud.ibm.com",
|
||||
apikey="*****",
|
||||
project_id="*****",
|
||||
params=parameters,
|
||||
)
|
||||
"""
|
||||
|
||||
model_id: str = ""
|
||||
"""Type of model to use."""
|
||||
|
||||
deployment_id: str = ""
|
||||
"""Type of deployed model to use."""
|
||||
|
||||
project_id: str = ""
|
||||
"""ID of the Watson Studio project."""
|
||||
|
||||
space_id: str = ""
|
||||
"""ID of the Watson Studio space."""
|
||||
|
||||
url: Optional[SecretStr] = None
|
||||
"""Url to Watson Machine Learning or CPD instance"""
|
||||
|
||||
apikey: Optional[SecretStr] = None
|
||||
"""Apikey to Watson Machine Learning or CPD instance"""
|
||||
|
||||
token: Optional[SecretStr] = None
|
||||
"""Token to CPD instance"""
|
||||
|
||||
password: Optional[SecretStr] = None
|
||||
"""Password to CPD instance"""
|
||||
|
||||
username: Optional[SecretStr] = None
|
||||
"""Username to CPD instance"""
|
||||
|
||||
instance_id: Optional[SecretStr] = None
|
||||
"""Instance_id of CPD instance"""
|
||||
|
||||
version: Optional[SecretStr] = None
|
||||
"""Version of CPD instance"""
|
||||
|
||||
params: Optional[dict] = None
|
||||
"""Chat Model parameters to use during generate requests."""
|
||||
|
||||
verify: Union[str, bool] = ""
|
||||
"""User can pass as verify one of following:
|
||||
the path to a CA_BUNDLE file
|
||||
the path of directory with certificates of trusted CAs
|
||||
True - default path to truststore will be taken
|
||||
False - no verification will be made"""
|
||||
|
||||
streaming: bool = False
|
||||
""" Whether to stream the results or not. """
|
||||
|
||||
watsonx_model: ModelInference = Field(default=None, exclude=True) #: :meta private:
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
allow_population_by_field_name = True
|
||||
|
||||
@classmethod
|
||||
def is_lc_serializable(cls) -> bool:
|
||||
return False
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "watsonx-chat"
|
||||
|
||||
@property
|
||||
def lc_secrets(self) -> Dict[str, str]:
|
||||
"""A map of constructor argument names to secret ids.
|
||||
|
||||
For example:
|
||||
{
|
||||
"url": "WATSONX_URL",
|
||||
"apikey": "WATSONX_APIKEY",
|
||||
"token": "WATSONX_TOKEN",
|
||||
"password": "WATSONX_PASSWORD",
|
||||
"username": "WATSONX_USERNAME",
|
||||
"instance_id": "WATSONX_INSTANCE_ID",
|
||||
}
|
||||
"""
|
||||
return {
|
||||
"url": "WATSONX_URL",
|
||||
"apikey": "WATSONX_APIKEY",
|
||||
"token": "WATSONX_TOKEN",
|
||||
"password": "WATSONX_PASSWORD",
|
||||
"username": "WATSONX_USERNAME",
|
||||
"instance_id": "WATSONX_INSTANCE_ID",
|
||||
}
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that credentials and python package exists in environment."""
|
||||
values["url"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "url", "WATSONX_URL")
|
||||
)
|
||||
if "cloud.ibm.com" in values.get("url", "").get_secret_value():
|
||||
values["apikey"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
||||
)
|
||||
else:
|
||||
if (
|
||||
not values["token"]
|
||||
and "WATSONX_TOKEN" not in os.environ
|
||||
and not values["password"]
|
||||
and "WATSONX_PASSWORD" not in os.environ
|
||||
and not values["apikey"]
|
||||
and "WATSONX_APIKEY" not in os.environ
|
||||
):
|
||||
raise ValueError(
|
||||
"Did not find 'token', 'password' or 'apikey',"
|
||||
" please add an environment variable"
|
||||
" `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' "
|
||||
"which contains it,"
|
||||
" or pass 'token', 'password' or 'apikey'"
|
||||
" as a named parameter."
|
||||
)
|
||||
elif values["token"] or "WATSONX_TOKEN" in os.environ:
|
||||
values["token"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "token", "WATSONX_TOKEN")
|
||||
)
|
||||
elif values["password"] or "WATSONX_PASSWORD" in os.environ:
|
||||
values["password"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "password", "WATSONX_PASSWORD")
|
||||
)
|
||||
values["username"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
||||
)
|
||||
elif values["apikey"] or "WATSONX_APIKEY" in os.environ:
|
||||
values["apikey"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
|
||||
)
|
||||
values["username"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
|
||||
)
|
||||
if not values["instance_id"] or "WATSONX_INSTANCE_ID" not in os.environ:
|
||||
values["instance_id"] = convert_to_secret_str(
|
||||
get_from_dict_or_env(values, "instance_id", "WATSONX_INSTANCE_ID")
|
||||
)
|
||||
credentials = Credentials(
|
||||
url=values["url"].get_secret_value() if values["url"] else None,
|
||||
api_key=values["apikey"].get_secret_value() if values["apikey"] else None,
|
||||
token=values["token"].get_secret_value() if values["token"] else None,
|
||||
password=values["password"].get_secret_value()
|
||||
if values["password"]
|
||||
else None,
|
||||
username=values["username"].get_secret_value()
|
||||
if values["username"]
|
||||
else None,
|
||||
instance_id=values["instance_id"].get_secret_value()
|
||||
if values["instance_id"]
|
||||
else None,
|
||||
version=values["version"].get_secret_value() if values["version"] else None,
|
||||
verify=values["verify"],
|
||||
)
|
||||
|
||||
watsonx_chat = ModelInference(
|
||||
model_id=values["model_id"],
|
||||
deployment_id=values["deployment_id"],
|
||||
credentials=credentials,
|
||||
params=values["params"],
|
||||
project_id=values["project_id"],
|
||||
space_id=values["space_id"],
|
||||
)
|
||||
values["watsonx_model"] = watsonx_chat
|
||||
|
||||
return values
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
stream: Optional[bool] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
should_stream = stream if stream is not None else self.streaming
|
||||
if should_stream:
|
||||
stream_iter = self._stream(
|
||||
messages, stop=stop, run_manager=run_manager, **kwargs
|
||||
)
|
||||
return generate_from_stream(stream_iter)
|
||||
|
||||
message_dicts, params = self._create_message_dicts(messages, stop, **kwargs)
|
||||
chat_prompt = self._create_chat_prompt(message_dicts)
|
||||
|
||||
tools = kwargs.get("tools")
|
||||
|
||||
if tools:
|
||||
chat_prompt = f"""[AVAILABLE_TOOLS]
|
||||
{json.dumps(tools[0], indent=2)}
|
||||
[/AVAILABLE_TOOLS]
|
||||
[INST]<<SYS>>You are Mixtral Chat function calling, an AI language model developed by
|
||||
Mistral AI. You are a cautious assistant. You carefully follow instructions. You are
|
||||
helpful and harmless and you follow ethical guidelines and promote positive behavior.
|
||||
<</SYS>>
|
||||
|
||||
To use these tools you must always respond in JSON format containing `"type"` and
|
||||
`"function"` key-value pairs. Also `"function"` key-value pair always containing
|
||||
`"name"` and `"arguments"` key-value pairs.
|
||||
|
||||
Between subsequent JSONs should be one blank line.
|
||||
|
||||
Remember, even when answering to the user, you must still use this only JSON format!
|
||||
|
||||
{chat_prompt}[/INST]"""
|
||||
|
||||
if "tools" in kwargs:
|
||||
del kwargs["tools"]
|
||||
if "tool_choice" in kwargs:
|
||||
del kwargs["tool_choice"]
|
||||
|
||||
if "params" in kwargs:
|
||||
del kwargs["params"]
|
||||
|
||||
response = self.watsonx_model.generate(
|
||||
prompt=chat_prompt, params=params, **kwargs
|
||||
)
|
||||
return self._create_chat_result(response)
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
messages: List[BaseMessage],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[ChatGenerationChunk]:
|
||||
message_dicts, params = self._create_message_dicts(messages, stop)
|
||||
chat_prompt = self._create_chat_prompt(message_dicts)
|
||||
|
||||
for chunk in self.watsonx_model.generate_text_stream(
|
||||
prompt=chat_prompt, raw_response=True, params=params, **kwargs
|
||||
):
|
||||
if not isinstance(chunk, dict):
|
||||
chunk = chunk.dict()
|
||||
if len(chunk["results"]) == 0:
|
||||
continue
|
||||
choice = chunk["results"][0]
|
||||
|
||||
chunk = AIMessageChunk(
|
||||
content=choice["generated_text"],
|
||||
)
|
||||
generation_info = {}
|
||||
if finish_reason := choice.get("stop_reason"):
|
||||
generation_info["finish_reason"] = finish_reason
|
||||
logprobs = choice.get("logprobs")
|
||||
if logprobs:
|
||||
generation_info["logprobs"] = logprobs
|
||||
chunk = ChatGenerationChunk(
|
||||
message=chunk, generation_info=generation_info or None
|
||||
)
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs)
|
||||
|
||||
yield chunk
|
||||
|
||||
def _create_chat_prompt(self, messages: List[Dict[str, Any]]) -> str:
|
||||
prompt = ""
|
||||
|
||||
if self.model_id in ["ibm/granite-13b-chat-v1", "ibm/granite-13b-chat-v2"]:
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
prompt += "<|system|>\n" + message["content"] + "\n\n"
|
||||
elif message["role"] == "assistant":
|
||||
prompt += "<|assistant|>\n" + message["content"] + "\n\n"
|
||||
elif message["role"] == "function":
|
||||
prompt += "<|function|>\n" + message["content"] + "\n\n"
|
||||
elif message["role"] == "tool":
|
||||
prompt += "<|tool|>\n" + message["content"] + "\n\n"
|
||||
else:
|
||||
prompt += "<|user|>:\n" + message["content"] + "\n\n"
|
||||
|
||||
prompt += "<|assistant|>\n"
|
||||
|
||||
elif self.model_id in [
|
||||
"meta-llama/llama-2-13b-chat",
|
||||
"meta-llama/llama-2-70b-chat",
|
||||
]:
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
prompt += "[INST] <<SYS>>\n" + message["content"] + "<</SYS>>\n\n"
|
||||
elif message["role"] == "assistant":
|
||||
prompt += message["content"] + "\n[INST]\n\n"
|
||||
else:
|
||||
prompt += message["content"] + "\n[/INST]\n"
|
||||
|
||||
else:
|
||||
prompt = ChatPromptValue(messages=convert_to_messages(messages)).to_string()
|
||||
|
||||
return prompt
|
||||
|
||||
def _create_message_dicts(
|
||||
self, messages: List[BaseMessage], stop: Optional[List[str]], **kwargs: Any
|
||||
) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
|
||||
params = {**self.params} if self.params else {}
|
||||
params = params | {**kwargs.get("params", {})}
|
||||
if stop is not None:
|
||||
if params and "stop_sequences" in params:
|
||||
raise ValueError(
|
||||
"`stop_sequences` found in both the input and default params."
|
||||
)
|
||||
params = (params or {}) | {"stop_sequences": stop}
|
||||
message_dicts = [_convert_message_to_dict(m) for m in messages]
|
||||
return message_dicts, params
|
||||
|
||||
def _create_chat_result(self, response: Union[dict]) -> ChatResult:
|
||||
generations = []
|
||||
sum_of_total_generated_tokens = 0
|
||||
sum_of_total_input_tokens = 0
|
||||
|
||||
if response.get("error"):
|
||||
raise ValueError(response.get("error"))
|
||||
|
||||
for res in response["results"]:
|
||||
message = _convert_dict_to_message(res)
|
||||
generation_info = dict(finish_reason=res.get("stop_reason"))
|
||||
if "logprobs" in res:
|
||||
generation_info["logprobs"] = res["logprobs"]
|
||||
if "generated_token_count" in res:
|
||||
sum_of_total_generated_tokens += res["generated_token_count"]
|
||||
if "input_token_count" in res:
|
||||
sum_of_total_input_tokens += res["input_token_count"]
|
||||
gen = ChatGeneration(
|
||||
message=message,
|
||||
generation_info=generation_info,
|
||||
)
|
||||
generations.append(gen)
|
||||
token_usage = {
|
||||
"generated_token_count": sum_of_total_generated_tokens,
|
||||
"input_token_count": sum_of_total_input_tokens,
|
||||
}
|
||||
llm_output = {
|
||||
"token_usage": token_usage,
|
||||
"model_name": self.model_id,
|
||||
"system_fingerprint": response.get("system_fingerprint", ""),
|
||||
}
|
||||
return ChatResult(generations=generations, llm_output=llm_output)
|
||||
|
||||
def bind_functions(
|
||||
self,
|
||||
functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
function_call: Optional[
|
||||
Union[_FunctionCall, str, Literal["auto", "none"]]
|
||||
] = None,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind functions (and other objects) to this chat model.
|
||||
|
||||
Assumes model is compatible with IBM watsonx.ai function-calling API.
|
||||
|
||||
Args:
|
||||
functions: A list of function definitions to bind to this chat model.
|
||||
Can be a dictionary, pydantic model, or callable. Pydantic
|
||||
models and callables will be automatically converted to
|
||||
their schema dictionary representation.
|
||||
function_call: Which function to require the model to call.
|
||||
Must be the name of the single provided function or
|
||||
"auto" to automatically determine which function to call
|
||||
(if any).
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
|
||||
formatted_functions = [convert_to_openai_function(fn) for fn in functions]
|
||||
if function_call is not None:
|
||||
function_call = (
|
||||
{"name": function_call}
|
||||
if isinstance(function_call, str)
|
||||
and function_call not in ("auto", "none")
|
||||
else function_call
|
||||
)
|
||||
if isinstance(function_call, dict) and len(formatted_functions) != 1:
|
||||
raise ValueError(
|
||||
"When specifying `function_call`, you must provide exactly one "
|
||||
"function."
|
||||
)
|
||||
if (
|
||||
isinstance(function_call, dict)
|
||||
and formatted_functions[0]["name"] != function_call["name"]
|
||||
):
|
||||
raise ValueError(
|
||||
f"Function call {function_call} was specified, but the only "
|
||||
f"provided function was {formatted_functions[0]['name']}."
|
||||
)
|
||||
kwargs = {**kwargs, "function_call": function_call}
|
||||
return super().bind(
|
||||
functions=formatted_functions,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def bind_tools(
|
||||
self,
|
||||
tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, BaseMessage]:
|
||||
"""Bind tool-like objects to this chat model.
|
||||
|
||||
Args:
|
||||
tools: A list of tool definitions to bind to this chat model.
|
||||
Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic
|
||||
models, callables, and BaseTools will be automatically converted to
|
||||
their schema dictionary representation.
|
||||
**kwargs: Any additional parameters to pass to the
|
||||
:class:`~langchain.runnable.Runnable` constructor.
|
||||
"""
|
||||
bind_tools_supported_models = ["mistralai/mixtral-8x7b-instruct-v01"]
|
||||
if self.model_id not in bind_tools_supported_models:
|
||||
raise Warning(
|
||||
f"bind_tools() method for ChatWatsonx support only "
|
||||
f"following models: {bind_tools_supported_models}"
|
||||
)
|
||||
|
||||
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
|
||||
|
||||
return super().bind(tools=formatted_tools, **kwargs)
|
||||
|
||||
def with_structured_output(
|
||||
self,
|
||||
schema: Optional[Union[Dict, Type[BaseModel]]] = None,
|
||||
*,
|
||||
method: Literal["function_calling", "json_mode"] = "function_calling",
|
||||
include_raw: bool = False,
|
||||
**kwargs: Any,
|
||||
) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
|
||||
"""Model wrapper that returns outputs formatted to match the given schema.
|
||||
|
||||
Args:
|
||||
schema: The output schema as a dict or a Pydantic class. If a Pydantic class
|
||||
then the model output will be an object of that class. If a dict then
|
||||
the model output will be a dict. With a Pydantic class the returned
|
||||
attributes will be validated, whereas with a dict they will not be. If
|
||||
`method` is "function_calling" and `schema` is a dict, then the dict
|
||||
must match the IBM watsonx.ai function-calling spec.
|
||||
method: The method for steering model generation, either "function_calling"
|
||||
or "json_mode". If "function_calling" then the schema will be converted
|
||||
to an IBM watsonx.ai function and the returned model will make use of the
|
||||
function-calling API. If "json_mode" then IBM watsonx.ai's JSON mode will be
|
||||
used. Note that if using "json_mode" then you must include instructions
|
||||
for formatting the output into the desired schema into the model call.
|
||||
include_raw: If False then only the parsed structured output is returned. If
|
||||
an error occurs during model output parsing it will be raised. If True
|
||||
then both the raw model response (a BaseMessage) and the parsed model
|
||||
response will be returned. If an error occurs during output parsing it
|
||||
will be caught and returned as well. The final output is always a dict
|
||||
with keys "raw", "parsed", and "parsing_error".
|
||||
|
||||
Returns:
|
||||
A Runnable that takes any ChatModel input and returns as output:
|
||||
|
||||
If include_raw is True then a dict with keys:
|
||||
raw: BaseMessage
|
||||
parsed: Optional[_DictOrPydantic]
|
||||
parsing_error: Optional[BaseException]
|
||||
|
||||
If include_raw is False then just _DictOrPydantic is returned,
|
||||
where _DictOrPydantic depends on the schema:
|
||||
|
||||
If schema is a Pydantic class then _DictOrPydantic is the Pydantic
|
||||
class.
|
||||
|
||||
If schema is a dict then _DictOrPydantic is a dict.
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatWatsonx(...)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
|
||||
# -> AnswerWithJustification(
|
||||
# answer='They weigh the same',
|
||||
# justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
|
||||
# )
|
||||
|
||||
Example: Function-calling, Pydantic schema (method="function_calling", include_raw=True):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatWatsonx(...)
|
||||
structured_llm = llm.with_structured_output(AnswerWithJustification, include_raw=True)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
|
||||
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: Function-calling, dict schema (method="function_calling", include_raw=False):
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.utils.function_calling import convert_to_openai_tool
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
'''An answer to the user question along with justification for the answer.'''
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
dict_schema = convert_to_openai_tool(AnswerWithJustification)
|
||||
llm = ChatWatsonx(...)
|
||||
structured_llm = llm.with_structured_output(dict_schema)
|
||||
|
||||
structured_llm.invoke("What weighs more a pound of bricks or a pound of feathers")
|
||||
# -> {
|
||||
# 'answer': 'They weigh the same',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
|
||||
# }
|
||||
|
||||
Example: JSON mode, Pydantic schema (method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
class AnswerWithJustification(BaseModel):
|
||||
answer: str
|
||||
justification: str
|
||||
|
||||
llm = ChatWatsonx(...)
|
||||
structured_llm = llm.with_structured_output(
|
||||
AnswerWithJustification,
|
||||
method="json_mode",
|
||||
include_raw=True
|
||||
)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
|
||||
Example: JSON mode, no schema (schema=None, method="json_mode", include_raw=True):
|
||||
.. code-block::
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
|
||||
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
|
||||
|
||||
structured_llm.invoke(
|
||||
"Answer the following question. "
|
||||
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
|
||||
"What's heavier a pound of bricks or a pound of feathers?"
|
||||
)
|
||||
# -> {
|
||||
# 'raw': AIMessage(content='{\n "answer": "They are both the same weight.",\n "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
|
||||
# 'parsed': {
|
||||
# 'answer': 'They are both the same weight.',
|
||||
# 'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
|
||||
# },
|
||||
# 'parsing_error': None
|
||||
# }
|
||||
""" # noqa: E501
|
||||
if kwargs:
|
||||
raise ValueError(f"Received unsupported arguments {kwargs}")
|
||||
is_pydantic_schema = _is_pydantic_class(schema)
|
||||
if method == "function_calling":
|
||||
if schema is None:
|
||||
raise ValueError(
|
||||
"schema must be specified when method is 'function_calling'. "
|
||||
"Received None."
|
||||
)
|
||||
llm = self.bind_tools([schema], tool_choice=True)
|
||||
if is_pydantic_schema:
|
||||
output_parser: OutputParserLike = PydanticToolsParser(
|
||||
tools=[schema], first_tool_only=True
|
||||
)
|
||||
else:
|
||||
key_name = convert_to_openai_tool(schema)["function"]["name"]
|
||||
output_parser = JsonOutputKeyToolsParser(
|
||||
key_name=key_name, first_tool_only=True
|
||||
)
|
||||
elif method == "json_mode":
|
||||
llm = self.bind(response_format={"type": "json_object"})
|
||||
output_parser = (
|
||||
PydanticOutputParser(pydantic_object=schema)
|
||||
if is_pydantic_schema
|
||||
else JsonOutputParser()
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unrecognized method argument. Expected one of 'function_calling' or "
|
||||
f"'json_format'. Received: '{method}'"
|
||||
)
|
||||
|
||||
if include_raw:
|
||||
parser_assign = RunnablePassthrough.assign(
|
||||
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
|
||||
)
|
||||
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
|
||||
parser_with_fallback = parser_assign.with_fallbacks(
|
||||
[parser_none], exception_key="parsing_error"
|
||||
)
|
||||
return RunnableMap(raw=llm) | parser_with_fallback
|
||||
else:
|
||||
return llm | output_parser
|
||||
|
||||
|
||||
def _is_pydantic_class(obj: Any) -> bool:
|
||||
return isinstance(obj, type) and issubclass(obj, BaseModel)
|
474
libs/partners/ibm/poetry.lock
generated
474
libs/partners/ibm/poetry.lock
generated
@ -2,24 +2,24 @@
|
||||
|
||||
[[package]]
|
||||
name = "annotated-types"
|
||||
version = "0.6.0"
|
||||
version = "0.7.0"
|
||||
description = "Reusable constraint types to use with typing.Annotated"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "annotated_types-0.6.0-py3-none-any.whl", hash = "sha256:0641064de18ba7a25dee8f96403ebc39113d0cb953a01429249d5c7564666a43"},
|
||||
{file = "annotated_types-0.6.0.tar.gz", hash = "sha256:563339e807e53ffd9c267e99fc6d9ea23eb8443c08f112651963e24e22f84a5d"},
|
||||
{file = "annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53"},
|
||||
{file = "annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "certifi"
|
||||
version = "2024.2.2"
|
||||
version = "2024.6.2"
|
||||
description = "Python package for providing Mozilla's CA Bundle."
|
||||
optional = false
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"},
|
||||
{file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"},
|
||||
{file = "certifi-2024.6.2-py3-none-any.whl", hash = "sha256:ddc6c8ce995e6987e7faf5e3f1b02b302836a0e5d98ece18392cb1a36c72ad56"},
|
||||
{file = "certifi-2024.6.2.tar.gz", hash = "sha256:3cd43f1c6fa7dedc5899d69d3ad0398fd018ad1a17fba83ddaf78aa46c747516"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -123,13 +123,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "codespell"
|
||||
version = "2.2.6"
|
||||
version = "2.3.0"
|
||||
description = "Codespell"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "codespell-2.2.6-py3-none-any.whl", hash = "sha256:9ee9a3e5df0990604013ac2a9f22fa8e57669c827124a2e961fe8a1da4cacc07"},
|
||||
{file = "codespell-2.2.6.tar.gz", hash = "sha256:a8c65d8eb3faa03deabab6b3bbe798bea72e1799c7e9e955d57eca4096abcff9"},
|
||||
{file = "codespell-2.3.0-py3-none-any.whl", hash = "sha256:a9c7cef2501c9cfede2110fd6d4e5e62296920efe9abfb84648df866e47f58d1"},
|
||||
{file = "codespell-2.3.0.tar.gz", hash = "sha256:360c7d10f75e65f67bad720af7007e1060a5d395670ec11a7ed1fed9dd17471f"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@ -179,57 +179,57 @@ python-dateutil = ">=2.7"
|
||||
|
||||
[[package]]
|
||||
name = "ibm-cos-sdk"
|
||||
version = "2.13.4"
|
||||
version = "2.13.5"
|
||||
description = "IBM SDK for Python"
|
||||
optional = false
|
||||
python-versions = ">= 3.6"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "ibm-cos-sdk-2.13.4.tar.gz", hash = "sha256:ee06bb89205e2bd031967e7a0d3fc47b39363be03badc49442202394a791d24a"},
|
||||
{file = "ibm-cos-sdk-2.13.5.tar.gz", hash = "sha256:1aff7f9863ac9072a3db2f0053bec99478b26f3fb5fa797ce96a15bbb13cd40e"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
ibm-cos-sdk-core = "2.13.4"
|
||||
ibm-cos-sdk-s3transfer = "2.13.4"
|
||||
ibm-cos-sdk-core = "2.13.5"
|
||||
ibm-cos-sdk-s3transfer = "2.13.5"
|
||||
jmespath = ">=0.10.0,<=1.0.1"
|
||||
|
||||
[[package]]
|
||||
name = "ibm-cos-sdk-core"
|
||||
version = "2.13.4"
|
||||
version = "2.13.5"
|
||||
description = "Low-level, data-driven core of IBM SDK for Python"
|
||||
optional = false
|
||||
python-versions = ">= 3.6"
|
||||
python-versions = ">=3.6"
|
||||
files = [
|
||||
{file = "ibm-cos-sdk-core-2.13.4.tar.gz", hash = "sha256:c0f3c03b6c21bb69d3dedd2a1bb647621e0d99e0e1c0929d2c36bd45cfd4166c"},
|
||||
{file = "ibm-cos-sdk-core-2.13.5.tar.gz", hash = "sha256:d3a99d8b06b3f8c00b1a9501f85538d592463e63ddf8cec32672ab5a0b107b83"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
jmespath = ">=0.10.0,<=1.0.1"
|
||||
python-dateutil = ">=2.8.2,<3.0.0"
|
||||
requests = ">=2.31.0,<3.0"
|
||||
python-dateutil = ">=2.9.0,<3.0.0"
|
||||
requests = ">=2.32.3,<3.0"
|
||||
urllib3 = {version = ">=1.26.18,<2.2", markers = "python_version >= \"3.10\""}
|
||||
|
||||
[[package]]
|
||||
name = "ibm-cos-sdk-s3transfer"
|
||||
version = "2.13.4"
|
||||
version = "2.13.5"
|
||||
description = "IBM S3 Transfer Manager"
|
||||
optional = false
|
||||
python-versions = ">= 3.6"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "ibm-cos-sdk-s3transfer-2.13.4.tar.gz", hash = "sha256:3c93feaf66254803b2b8523720efaf90e7374b544ac0a411099617f3b4689279"},
|
||||
{file = "ibm-cos-sdk-s3transfer-2.13.5.tar.gz", hash = "sha256:9649b1f2201c6de96ff5a6b5a3686de3a809e6ef3b8b12c7c4f2f7ce72da7749"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
ibm-cos-sdk-core = "2.13.4"
|
||||
ibm-cos-sdk-core = "2.13.5"
|
||||
|
||||
[[package]]
|
||||
name = "ibm-watsonx-ai"
|
||||
version = "1.0.2"
|
||||
version = "1.0.9"
|
||||
description = "IBM watsonx.ai API Client"
|
||||
optional = false
|
||||
python-versions = ">=3.10"
|
||||
files = [
|
||||
{file = "ibm_watsonx_ai-1.0.2-py3-none-any.whl", hash = "sha256:784b37f06d2f82712ab621380c7ec2e2ef7ea082cdd9e839390ae86f616764bc"},
|
||||
{file = "ibm_watsonx_ai-1.0.2.tar.gz", hash = "sha256:2e557e0857ed2038b7350d0246d27cef7d6654f57ef8dd113f5c8fed66c43af8"},
|
||||
{file = "ibm_watsonx_ai-1.0.9-py3-none-any.whl", hash = "sha256:3b9d42a60418430ddb37b1f9d7e98ade241089518903ebd937d77ff16b07e20b"},
|
||||
{file = "ibm_watsonx_ai-1.0.9.tar.gz", hash = "sha256:c0733a028d34ac75904812a6e3d213feffa401498a9e02a3e3d8d4d2d6d83d32"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -245,8 +245,9 @@ urllib3 = "*"
|
||||
|
||||
[package.extras]
|
||||
fl-crypto = ["pyhelayers (==1.5.0.3)"]
|
||||
fl-rt22-2-py3-10 = ["GPUtil", "cloudpickle (==1.3.0)", "cryptography (==39.0.1)", "ddsketch (==1.1.2)", "diffprivlib (==0.5.1)", "environs (==9.5.0)", "gym", "image (==1.5.33)", "joblib (==1.1.1)", "jsonpickle (==1.4.2)", "lz4", "numcompress (==0.1.2)", "numpy (==1.23.1)", "pandas (==1.4.3)", "parse (==1.19.0)", "pathlib2 (==2.3.6)", "protobuf (==3.19.5)", "psutil", "pyYAML (==6.0.1)", "pytest (==6.2.5)", "requests (==2.27.1)", "scikit-learn (==1.1.1)", "scipy (==1.8.1)", "setproctitle", "skorch (==0.12.0)", "tabulate (==0.8.9)", "tensorflow (==2.9.3)", "torch (==1.12.1)", "websockets (==10.1)"]
|
||||
fl-rt23-1-py3-10 = ["GPUtil", "cloudpickle (==1.3.0)", "cryptography (==39.0.1)", "ddsketch (==1.1.2)", "diffprivlib (==0.5.1)", "environs (==9.5.0)", "gym", "image (==1.5.33)", "joblib (==1.1.1)", "jsonpickle (==1.4.2)", "lz4", "numcompress (==0.1.2)", "numpy (==1.23.5)", "pandas (==1.5.3)", "parse (==1.19.0)", "pathlib2 (==2.3.6)", "protobuf (==4.22.1)", "psutil", "pyYAML (==6.0.1)", "pytest (==6.2.5)", "requests (==2.27.1)", "scikit-learn (==1.1.1)", "scipy (==1.10.1)", "setproctitle", "skorch (==0.12.0)", "tabulate (==0.8.9)", "tensorflow (==2.12.0)", "torch (==2.0.0)", "websockets (==10.1)"]
|
||||
fl-crypto-rt24-1 = ["pyhelayers (==1.5.3.1)"]
|
||||
fl-rt23-1-py3-10 = ["GPUtil", "cryptography (==42.0.5)", "ddsketch (==2.0.4)", "diffprivlib (==0.5.1)", "environs (==9.5.0)", "gym", "image (==1.5.33)", "joblib (==1.1.1)", "lz4", "msgpack (==1.0.7)", "msgpack-numpy (==0.4.8)", "numcompress (==0.1.2)", "numpy (==1.23.5)", "pandas (==1.5.3)", "parse (==1.19.0)", "pathlib2 (==2.3.6)", "protobuf (==4.22.1)", "psutil", "pyYAML (==6.0.1)", "pytest (==6.2.5)", "requests (==2.31.0)", "scikit-learn (==1.1.1)", "scipy (==1.10.1)", "setproctitle", "skops (==0.9.0)", "skorch (==0.12.0)", "tabulate (==0.8.9)", "tensorflow (==2.12.0)", "torch (==2.0.1)", "websockets (==10.1)"]
|
||||
fl-rt24-1-py3-11 = ["GPUtil", "cryptography (==42.0.5)", "ddsketch (==2.0.4)", "diffprivlib (==0.5.1)", "environs (==9.5.0)", "gym", "image (==1.5.33)", "joblib (==1.3.2)", "lz4", "msgpack (==1.0.7)", "msgpack-numpy (==0.4.8)", "numcompress (==0.1.2)", "numpy (==1.26.4)", "pandas (==2.1.4)", "parse (==1.19.0)", "pathlib2 (==2.3.6)", "protobuf (==4.22.1)", "psutil", "pyYAML (==6.0.1)", "pytest (==6.2.5)", "requests (==2.31.0)", "scikit-learn (==1.3.2)", "scipy (==1.11.4)", "setproctitle", "skops (==0.9.0)", "skorch (==0.12.0)", "tabulate (==0.8.9)", "tensorflow (==2.14.1)", "torch (==2.1.2)", "websockets (==10.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "idna"
|
||||
@ -261,22 +262,22 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "importlib-metadata"
|
||||
version = "7.1.0"
|
||||
version = "8.0.0"
|
||||
description = "Read metadata from Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "importlib_metadata-7.1.0-py3-none-any.whl", hash = "sha256:30962b96c0c223483ed6cc7280e7f0199feb01a0e40cfae4d4450fc6fab1f570"},
|
||||
{file = "importlib_metadata-7.1.0.tar.gz", hash = "sha256:b78938b926ee8d5f020fc4772d487045805a55ddbad2ecf21c6d60938dc7fcd2"},
|
||||
{file = "importlib_metadata-8.0.0-py3-none-any.whl", hash = "sha256:15584cf2b1bf449d98ff8a6ff1abef57bf20f3ac6454f431736cd3e660921b2f"},
|
||||
{file = "importlib_metadata-8.0.0.tar.gz", hash = "sha256:188bd24e4c346d3f0a933f275c2fec67050326a856b9a359881d7c2a697e8812"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
zipp = ">=0.5"
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
perf = ["ipython"]
|
||||
testing = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
test = ["flufl.flake8", "importlib-resources (>=1.3)", "jaraco.test (>=5.4)", "packaging", "pyfakefs", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-perf (>=0.9.2)", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[[package]]
|
||||
name = "iniconfig"
|
||||
@ -316,18 +317,18 @@ jsonpointer = ">=1.9"
|
||||
|
||||
[[package]]
|
||||
name = "jsonpointer"
|
||||
version = "2.4"
|
||||
version = "3.0.0"
|
||||
description = "Identify specific nodes in a JSON document (RFC 6901)"
|
||||
optional = false
|
||||
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*"
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "jsonpointer-2.4-py2.py3-none-any.whl", hash = "sha256:15d51bba20eea3165644553647711d150376234112651b4f1811022aecad7d7a"},
|
||||
{file = "jsonpointer-2.4.tar.gz", hash = "sha256:585cee82b70211fa9e6043b7bb89db6e1aa49524340dde8ad6b63206ea689d88"},
|
||||
{file = "jsonpointer-3.0.0-py2.py3-none-any.whl", hash = "sha256:13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942"},
|
||||
{file = "jsonpointer-3.0.0.tar.gz", hash = "sha256:2b2d729f2091522d61c3b31f82e11870f60b68f43fbc705cb76bf4b832af59ef"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "langchain-core"
|
||||
version = "0.2.0rc1"
|
||||
version = "0.2.10"
|
||||
description = "Building applications with LLMs through composability"
|
||||
optional = false
|
||||
python-versions = ">=3.8.1,<4.0"
|
||||
@ -336,14 +337,14 @@ develop = true
|
||||
|
||||
[package.dependencies]
|
||||
jsonpatch = "^1.33"
|
||||
langsmith = "^0.1.0"
|
||||
packaging = "^23.2"
|
||||
pydantic = ">=1,<3"
|
||||
langsmith = "^0.1.75"
|
||||
packaging = ">=23.2,<25"
|
||||
pydantic = [
|
||||
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
|
||||
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
|
||||
]
|
||||
PyYAML = ">=5.3"
|
||||
tenacity = "^8.1.0"
|
||||
|
||||
[package.extras]
|
||||
extended-testing = ["jinja2 (>=3,<4)"]
|
||||
tenacity = "^8.1.0,!=8.4.0"
|
||||
|
||||
[package.source]
|
||||
type = "directory"
|
||||
@ -351,18 +352,21 @@ url = "../../core"
|
||||
|
||||
[[package]]
|
||||
name = "langsmith"
|
||||
version = "0.1.59"
|
||||
version = "0.1.82"
|
||||
description = "Client library to connect to the LangSmith LLM Tracing and Evaluation Platform."
|
||||
optional = false
|
||||
python-versions = "<4.0,>=3.8.1"
|
||||
files = [
|
||||
{file = "langsmith-0.1.59-py3-none-any.whl", hash = "sha256:445e3bc1d3baa1e5340cd979907a19483b9763a2ed37b863a01113d406f69345"},
|
||||
{file = "langsmith-0.1.59.tar.gz", hash = "sha256:e748a89f4dd6aa441349143e49e546c03b5dfb43376a25bfef6a5ca792fe1437"},
|
||||
{file = "langsmith-0.1.82-py3-none-any.whl", hash = "sha256:9b3653e7d316036b0c60bf0bc3e280662d660f485a4ebd8e5c9d84f9831ae79c"},
|
||||
{file = "langsmith-0.1.82.tar.gz", hash = "sha256:c02e2bbc488c10c13b52c69d271eb40bd38da078d37b6ae7ae04a18bd48140be"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
orjson = ">=3.9.14,<4.0.0"
|
||||
pydantic = ">=1,<3"
|
||||
pydantic = [
|
||||
{version = ">=1,<3", markers = "python_full_version < \"3.12.4\""},
|
||||
{version = ">=2.7.4,<3.0.0", markers = "python_full_version >= \"3.12.4\""},
|
||||
]
|
||||
requests = ">=2,<3"
|
||||
|
||||
[[package]]
|
||||
@ -487,68 +491,68 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "orjson"
|
||||
version = "3.10.3"
|
||||
version = "3.10.5"
|
||||
description = "Fast, correct Python JSON library supporting dataclasses, datetimes, and numpy"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "orjson-3.10.3-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9fb6c3f9f5490a3eb4ddd46fc1b6eadb0d6fc16fb3f07320149c3286a1409dd8"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:252124b198662eee80428f1af8c63f7ff077c88723fe206a25df8dc57a57b1fa"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9f3e87733823089a338ef9bbf363ef4de45e5c599a9bf50a7a9b82e86d0228da"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c8334c0d87103bb9fbbe59b78129f1f40d1d1e8355bbed2ca71853af15fa4ed3"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1952c03439e4dce23482ac846e7961f9d4ec62086eb98ae76d97bd41d72644d7"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:c0403ed9c706dcd2809f1600ed18f4aae50be263bd7112e54b50e2c2bc3ebd6d"},
|
||||
{file = "orjson-3.10.3-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:382e52aa4270a037d41f325e7d1dfa395b7de0c367800b6f337d8157367bf3a7"},
|
||||
{file = "orjson-3.10.3-cp310-none-win32.whl", hash = "sha256:be2aab54313752c04f2cbaab4515291ef5af8c2256ce22abc007f89f42f49109"},
|
||||
{file = "orjson-3.10.3-cp310-none-win_amd64.whl", hash = "sha256:416b195f78ae461601893f482287cee1e3059ec49b4f99479aedf22a20b1098b"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:73100d9abbbe730331f2242c1fc0bcb46a3ea3b4ae3348847e5a141265479700"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:544a12eee96e3ab828dbfcb4d5a0023aa971b27143a1d35dc214c176fdfb29b3"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:520de5e2ef0b4ae546bea25129d6c7c74edb43fc6cf5213f511a927f2b28148b"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ccaa0a401fc02e8828a5bedfd80f8cd389d24f65e5ca3954d72c6582495b4bcf"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a7bc9e8bc11bac40f905640acd41cbeaa87209e7e1f57ade386da658092dc16"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:3582b34b70543a1ed6944aca75e219e1192661a63da4d039d088a09c67543b08"},
|
||||
{file = "orjson-3.10.3-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:1c23dfa91481de880890d17aa7b91d586a4746a4c2aa9a145bebdbaf233768d5"},
|
||||
{file = "orjson-3.10.3-cp311-none-win32.whl", hash = "sha256:1770e2a0eae728b050705206d84eda8b074b65ee835e7f85c919f5705b006c9b"},
|
||||
{file = "orjson-3.10.3-cp311-none-win_amd64.whl", hash = "sha256:93433b3c1f852660eb5abdc1f4dd0ced2be031ba30900433223b28ee0140cde5"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:a39aa73e53bec8d410875683bfa3a8edf61e5a1c7bb4014f65f81d36467ea098"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0943a96b3fa09bee1afdfccc2cb236c9c64715afa375b2af296c73d91c23eab2"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e852baafceff8da3c9defae29414cc8513a1586ad93e45f27b89a639c68e8176"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18566beb5acd76f3769c1d1a7ec06cdb81edc4d55d2765fb677e3eaa10fa99e0"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bd2218d5a3aa43060efe649ec564ebedec8ce6ae0a43654b81376216d5ebd42"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cf20465e74c6e17a104ecf01bf8cd3b7b252565b4ccee4548f18b012ff2f8069"},
|
||||
{file = "orjson-3.10.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ba7f67aa7f983c4345eeda16054a4677289011a478ca947cd69c0a86ea45e534"},
|
||||
{file = "orjson-3.10.3-cp312-none-win32.whl", hash = "sha256:17e0713fc159abc261eea0f4feda611d32eabc35708b74bef6ad44f6c78d5ea0"},
|
||||
{file = "orjson-3.10.3-cp312-none-win_amd64.whl", hash = "sha256:4c895383b1ec42b017dd2c75ae8a5b862fc489006afde06f14afbdd0309b2af0"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:be2719e5041e9fb76c8c2c06b9600fe8e8584e6980061ff88dcbc2691a16d20d"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:cb0175a5798bdc878956099f5c54b9837cb62cfbf5d0b86ba6d77e43861bcec2"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:978be58a68ade24f1af7758626806e13cff7748a677faf95fbb298359aa1e20d"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:16bda83b5c61586f6f788333d3cf3ed19015e3b9019188c56983b5a299210eb5"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ad1f26bea425041e0a1adad34630c4825a9e3adec49079b1fb6ac8d36f8b754"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:9e253498bee561fe85d6325ba55ff2ff08fb5e7184cd6a4d7754133bd19c9195"},
|
||||
{file = "orjson-3.10.3-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:0a62f9968bab8a676a164263e485f30a0b748255ee2f4ae49a0224be95f4532b"},
|
||||
{file = "orjson-3.10.3-cp38-none-win32.whl", hash = "sha256:8d0b84403d287d4bfa9bf7d1dc298d5c1c5d9f444f3737929a66f2fe4fb8f134"},
|
||||
{file = "orjson-3.10.3-cp38-none-win_amd64.whl", hash = "sha256:8bc7a4df90da5d535e18157220d7915780d07198b54f4de0110eca6b6c11e290"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:9059d15c30e675a58fdcd6f95465c1522b8426e092de9fff20edebfdc15e1cb0"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8d40c7f7938c9c2b934b297412c067936d0b54e4b8ab916fd1a9eb8f54c02294"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:d4a654ec1de8fdaae1d80d55cee65893cb06494e124681ab335218be6a0691e7"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:831c6ef73f9aa53c5f40ae8f949ff7681b38eaddb6904aab89dca4d85099cb78"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:99b880d7e34542db89f48d14ddecbd26f06838b12427d5a25d71baceb5ba119d"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:2e5e176c994ce4bd434d7aafb9ecc893c15f347d3d2bbd8e7ce0b63071c52e25"},
|
||||
{file = "orjson-3.10.3-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b69a58a37dab856491bf2d3bbf259775fdce262b727f96aafbda359cb1d114d8"},
|
||||
{file = "orjson-3.10.3-cp39-none-win32.whl", hash = "sha256:b8d4d1a6868cde356f1402c8faeb50d62cee765a1f7ffcfd6de732ab0581e063"},
|
||||
{file = "orjson-3.10.3-cp39-none-win_amd64.whl", hash = "sha256:5102f50c5fc46d94f2033fe00d392588564378260d64377aec702f21a7a22912"},
|
||||
{file = "orjson-3.10.3.tar.gz", hash = "sha256:2b166507acae7ba2f7c315dcf185a9111ad5e992ac81f2d507aac39193c2c818"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:545d493c1f560d5ccfc134803ceb8955a14c3fcb47bbb4b2fee0232646d0b932"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f4324929c2dd917598212bfd554757feca3e5e0fa60da08be11b4aa8b90013c1"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8c13ca5e2ddded0ce6a927ea5a9f27cae77eee4c75547b4297252cb20c4d30e6"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b6c8e30adfa52c025f042a87f450a6b9ea29649d828e0fec4858ed5e6caecf63"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:338fd4f071b242f26e9ca802f443edc588fa4ab60bfa81f38beaedf42eda226c"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:6970ed7a3126cfed873c5d21ece1cd5d6f83ca6c9afb71bbae21a0b034588d96"},
|
||||
{file = "orjson-3.10.5-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:235dadefb793ad12f7fa11e98a480db1f7c6469ff9e3da5e73c7809c700d746b"},
|
||||
{file = "orjson-3.10.5-cp310-none-win32.whl", hash = "sha256:be79e2393679eda6a590638abda16d167754393f5d0850dcbca2d0c3735cebe2"},
|
||||
{file = "orjson-3.10.5-cp310-none-win_amd64.whl", hash = "sha256:c4a65310ccb5c9910c47b078ba78e2787cb3878cdded1702ac3d0da71ddc5228"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:cdf7365063e80899ae3a697def1277c17a7df7ccfc979990a403dfe77bb54d40"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6b68742c469745d0e6ca5724506858f75e2f1e5b59a4315861f9e2b1df77775a"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7d10cc1b594951522e35a3463da19e899abe6ca95f3c84c69e9e901e0bd93d38"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dcbe82b35d1ac43b0d84072408330fd3295c2896973112d495e7234f7e3da2e1"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:10c0eb7e0c75e1e486c7563fe231b40fdd658a035ae125c6ba651ca3b07936f5"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:53ed1c879b10de56f35daf06dbc4a0d9a5db98f6ee853c2dbd3ee9d13e6f302f"},
|
||||
{file = "orjson-3.10.5-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:099e81a5975237fda3100f918839af95f42f981447ba8f47adb7b6a3cdb078fa"},
|
||||
{file = "orjson-3.10.5-cp311-none-win32.whl", hash = "sha256:1146bf85ea37ac421594107195db8bc77104f74bc83e8ee21a2e58596bfb2f04"},
|
||||
{file = "orjson-3.10.5-cp311-none-win_amd64.whl", hash = "sha256:36a10f43c5f3a55c2f680efe07aa93ef4a342d2960dd2b1b7ea2dd764fe4a37c"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:68f85ecae7af14a585a563ac741b0547a3f291de81cd1e20903e79f25170458f"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28afa96f496474ce60d3340fe8d9a263aa93ea01201cd2bad844c45cd21f5268"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:9cd684927af3e11b6e754df80b9ffafd9fb6adcaa9d3e8fdd5891be5a5cad51e"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d21b9983da032505f7050795e98b5d9eee0df903258951566ecc358f6696969"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1ad1de7fef79736dde8c3554e75361ec351158a906d747bd901a52a5c9c8d24b"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2d97531cdfe9bdd76d492e69800afd97e5930cb0da6a825646667b2c6c6c0211"},
|
||||
{file = "orjson-3.10.5-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:d69858c32f09c3e1ce44b617b3ebba1aba030e777000ebdf72b0d8e365d0b2b3"},
|
||||
{file = "orjson-3.10.5-cp312-none-win32.whl", hash = "sha256:64c9cc089f127e5875901ac05e5c25aa13cfa5dbbbd9602bda51e5c611d6e3e2"},
|
||||
{file = "orjson-3.10.5-cp312-none-win_amd64.whl", hash = "sha256:b2efbd67feff8c1f7728937c0d7f6ca8c25ec81373dc8db4ef394c1d93d13dc5"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:03b565c3b93f5d6e001db48b747d31ea3819b89abf041ee10ac6988886d18e01"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:584c902ec19ab7928fd5add1783c909094cc53f31ac7acfada817b0847975f26"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5a35455cc0b0b3a1eaf67224035f5388591ec72b9b6136d66b49a553ce9eb1e6"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1670fe88b116c2745a3a30b0f099b699a02bb3482c2591514baf5433819e4f4d"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:185c394ef45b18b9a7d8e8f333606e2e8194a50c6e3c664215aae8cf42c5385e"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-musllinux_1_2_aarch64.whl", hash = "sha256:ca0b3a94ac8d3886c9581b9f9de3ce858263865fdaa383fbc31c310b9eac07c9"},
|
||||
{file = "orjson-3.10.5-cp38-cp38-musllinux_1_2_x86_64.whl", hash = "sha256:dfc91d4720d48e2a709e9c368d5125b4b5899dced34b5400c3837dadc7d6271b"},
|
||||
{file = "orjson-3.10.5-cp38-none-win32.whl", hash = "sha256:c05f16701ab2a4ca146d0bca950af254cb7c02f3c01fca8efbbad82d23b3d9d4"},
|
||||
{file = "orjson-3.10.5-cp38-none-win_amd64.whl", hash = "sha256:8a11d459338f96a9aa7f232ba95679fc0c7cedbd1b990d736467894210205c09"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-macosx_10_15_x86_64.macosx_11_0_arm64.macosx_10_15_universal2.whl", hash = "sha256:85c89131d7b3218db1b24c4abecea92fd6c7f9fab87441cfc342d3acc725d807"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb66215277a230c456f9038d5e2d84778141643207f85336ef8d2a9da26bd7ca"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:51bbcdea96cdefa4a9b4461e690c75ad4e33796530d182bdd5c38980202c134a"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbead71dbe65f959b7bd8cf91e0e11d5338033eba34c114f69078d59827ee139"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5df58d206e78c40da118a8c14fc189207fffdcb1f21b3b4c9c0c18e839b5a214"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-musllinux_1_2_aarch64.whl", hash = "sha256:c4057c3b511bb8aef605616bd3f1f002a697c7e4da6adf095ca5b84c0fd43595"},
|
||||
{file = "orjson-3.10.5-cp39-cp39-musllinux_1_2_x86_64.whl", hash = "sha256:b39e006b00c57125ab974362e740c14a0c6a66ff695bff44615dcf4a70ce2b86"},
|
||||
{file = "orjson-3.10.5-cp39-none-win32.whl", hash = "sha256:eded5138cc565a9d618e111c6d5c2547bbdd951114eb822f7f6309e04db0fb47"},
|
||||
{file = "orjson-3.10.5-cp39-none-win_amd64.whl", hash = "sha256:cc28e90a7cae7fcba2493953cff61da5a52950e78dc2dacfe931a317ee3d8de7"},
|
||||
{file = "orjson-3.10.5.tar.gz", hash = "sha256:7a5baef8a4284405d96c90c7c62b755e9ef1ada84c2406c24a9ebec86b89f46d"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "packaging"
|
||||
version = "23.2"
|
||||
version = "24.1"
|
||||
description = "Core utilities for Python packages"
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"},
|
||||
{file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"},
|
||||
{file = "packaging-24.1-py3-none-any.whl", hash = "sha256:5b8f2217dbdbd2f7f384c41c628544e6d52f2d0f53c6d0c3ea61aa5d1d7ff124"},
|
||||
{file = "packaging-24.1.tar.gz", hash = "sha256:026ed72c8ed3fcce5bf8950572258698927fd1dbda10a5e981cdf0ac37f4f002"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -636,18 +640,18 @@ testing = ["pytest", "pytest-benchmark"]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic"
|
||||
version = "2.7.1"
|
||||
version = "2.7.4"
|
||||
description = "Data validation using Python type hints"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic-2.7.1-py3-none-any.whl", hash = "sha256:e029badca45266732a9a79898a15ae2e8b14840b1eabbb25844be28f0b33f3d5"},
|
||||
{file = "pydantic-2.7.1.tar.gz", hash = "sha256:e9dbb5eada8abe4d9ae5f46b9939aead650cd2b68f249bb3a8139dbe125803cc"},
|
||||
{file = "pydantic-2.7.4-py3-none-any.whl", hash = "sha256:ee8538d41ccb9c0a9ad3e0e5f07bf15ed8015b481ced539a1759d8cc89ae90d0"},
|
||||
{file = "pydantic-2.7.4.tar.gz", hash = "sha256:0c84efd9548d545f63ac0060c1e4d39bb9b14db8b3c0652338aecc07b5adec52"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
annotated-types = ">=0.4.0"
|
||||
pydantic-core = "2.18.2"
|
||||
pydantic-core = "2.18.4"
|
||||
typing-extensions = ">=4.6.1"
|
||||
|
||||
[package.extras]
|
||||
@ -655,90 +659,90 @@ email = ["email-validator (>=2.0.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "pydantic-core"
|
||||
version = "2.18.2"
|
||||
version = "2.18.4"
|
||||
description = "Core functionality for Pydantic validation and serialization"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:9e08e867b306f525802df7cd16c44ff5ebbe747ff0ca6cf3fde7f36c05a59a81"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:f0a21cbaa69900cbe1a2e7cad2aa74ac3cf21b10c3efb0fa0b80305274c0e8a2"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0680b1f1f11fda801397de52c36ce38ef1c1dc841a0927a94f226dea29c3ae3d"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:95b9d5e72481d3780ba3442eac863eae92ae43a5f3adb5b4d0a1de89d42bb250"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c4fcf5cd9c4b655ad666ca332b9a081112cd7a58a8b5a6ca7a3104bc950f2038"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b5155ff768083cb1d62f3e143b49a8a3432e6789a3abee8acd005c3c7af1c74"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:553ef617b6836fc7e4df130bb851e32fe357ce36336d897fd6646d6058d980af"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:b89ed9eb7d616ef5714e5590e6cf7f23b02d0d539767d33561e3675d6f9e3857"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:75f7e9488238e920ab6204399ded280dc4c307d034f3924cd7f90a38b1829563"},
|
||||
{file = "pydantic_core-2.18.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:ef26c9e94a8c04a1b2924149a9cb081836913818e55681722d7f29af88fe7b38"},
|
||||
{file = "pydantic_core-2.18.2-cp310-none-win32.whl", hash = "sha256:182245ff6b0039e82b6bb585ed55a64d7c81c560715d1bad0cbad6dfa07b4027"},
|
||||
{file = "pydantic_core-2.18.2-cp310-none-win_amd64.whl", hash = "sha256:e23ec367a948b6d812301afc1b13f8094ab7b2c280af66ef450efc357d2ae543"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:219da3f096d50a157f33645a1cf31c0ad1fe829a92181dd1311022f986e5fbe3"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:cc1cfd88a64e012b74e94cd00bbe0f9c6df57049c97f02bb07d39e9c852e19a4"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05b7133a6e6aeb8df37d6f413f7705a37ab4031597f64ab56384c94d98fa0e90"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:224c421235f6102e8737032483f43c1a8cfb1d2f45740c44166219599358c2cd"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b14d82cdb934e99dda6d9d60dc84a24379820176cc4a0d123f88df319ae9c150"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2728b01246a3bba6de144f9e3115b532ee44bd6cf39795194fb75491824a1413"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:470b94480bb5ee929f5acba6995251ada5e059a5ef3e0dfc63cca287283ebfa6"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:997abc4df705d1295a42f95b4eec4950a37ad8ae46d913caeee117b6b198811c"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:75250dbc5290e3f1a0f4618db35e51a165186f9034eff158f3d490b3fed9f8a0"},
|
||||
{file = "pydantic_core-2.18.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:4456f2dca97c425231d7315737d45239b2b51a50dc2b6f0c2bb181fce6207664"},
|
||||
{file = "pydantic_core-2.18.2-cp311-none-win32.whl", hash = "sha256:269322dcc3d8bdb69f054681edff86276b2ff972447863cf34c8b860f5188e2e"},
|
||||
{file = "pydantic_core-2.18.2-cp311-none-win_amd64.whl", hash = "sha256:800d60565aec896f25bc3cfa56d2277d52d5182af08162f7954f938c06dc4ee3"},
|
||||
{file = "pydantic_core-2.18.2-cp311-none-win_arm64.whl", hash = "sha256:1404c69d6a676245199767ba4f633cce5f4ad4181f9d0ccb0577e1f66cf4c46d"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:fb2bd7be70c0fe4dfd32c951bc813d9fe6ebcbfdd15a07527796c8204bd36242"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:6132dd3bd52838acddca05a72aafb6eab6536aa145e923bb50f45e78b7251043"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7d904828195733c183d20a54230c0df0eb46ec746ea1a666730787353e87182"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:c9bd70772c720142be1020eac55f8143a34ec9f82d75a8e7a07852023e46617f"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:2b8ed04b3582771764538f7ee7001b02e1170223cf9b75dff0bc698fadb00cf3"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:e6dac87ddb34aaec85f873d737e9d06a3555a1cc1a8e0c44b7f8d5daeb89d86f"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7ca4ae5a27ad7a4ee5170aebce1574b375de390bc01284f87b18d43a3984df72"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:886eec03591b7cf058467a70a87733b35f44707bd86cf64a615584fd72488b7c"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ca7b0c1f1c983e064caa85f3792dd2fe3526b3505378874afa84baf662e12241"},
|
||||
{file = "pydantic_core-2.18.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b4356d3538c3649337df4074e81b85f0616b79731fe22dd11b99499b2ebbdf3"},
|
||||
{file = "pydantic_core-2.18.2-cp312-none-win32.whl", hash = "sha256:8b172601454f2d7701121bbec3425dd71efcb787a027edf49724c9cefc14c038"},
|
||||
{file = "pydantic_core-2.18.2-cp312-none-win_amd64.whl", hash = "sha256:b1bd7e47b1558ea872bd16c8502c414f9e90dcf12f1395129d7bb42a09a95438"},
|
||||
{file = "pydantic_core-2.18.2-cp312-none-win_arm64.whl", hash = "sha256:98758d627ff397e752bc339272c14c98199c613f922d4a384ddc07526c86a2ec"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:9fdad8e35f278b2c3eb77cbdc5c0a49dada440657bf738d6905ce106dc1de439"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:1d90c3265ae107f91a4f279f4d6f6f1d4907ac76c6868b27dc7fb33688cfb347"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:390193c770399861d8df9670fb0d1874f330c79caaca4642332df7c682bf6b91"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:82d5d4d78e4448683cb467897fe24e2b74bb7b973a541ea1dcfec1d3cbce39fb"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:4774f3184d2ef3e14e8693194f661dea5a4d6ca4e3dc8e39786d33a94865cefd"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d4d938ec0adf5167cb335acb25a4ee69a8107e4984f8fbd2e897021d9e4ca21b"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0e8b1be28239fc64a88a8189d1df7fad8be8c1ae47fcc33e43d4be15f99cc70"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:868649da93e5a3d5eacc2b5b3b9235c98ccdbfd443832f31e075f54419e1b96b"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:78363590ef93d5d226ba21a90a03ea89a20738ee5b7da83d771d283fd8a56761"},
|
||||
{file = "pydantic_core-2.18.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:852e966fbd035a6468fc0a3496589b45e2208ec7ca95c26470a54daed82a0788"},
|
||||
{file = "pydantic_core-2.18.2-cp38-none-win32.whl", hash = "sha256:6a46e22a707e7ad4484ac9ee9f290f9d501df45954184e23fc29408dfad61350"},
|
||||
{file = "pydantic_core-2.18.2-cp38-none-win_amd64.whl", hash = "sha256:d91cb5ea8b11607cc757675051f61b3d93f15eca3cefb3e6c704a5d6e8440f4e"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:ae0a8a797a5e56c053610fa7be147993fe50960fa43609ff2a9552b0e07013e8"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:042473b6280246b1dbf530559246f6842b56119c2926d1e52b631bdc46075f2a"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a388a77e629b9ec814c1b1e6b3b595fe521d2cdc625fcca26fbc2d44c816804"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:e25add29b8f3b233ae90ccef2d902d0ae0432eb0d45370fe315d1a5cf231004b"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f459a5ce8434614dfd39bbebf1041952ae01da6bed9855008cb33b875cb024c0"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:eff2de745698eb46eeb51193a9f41d67d834d50e424aef27df2fcdee1b153845"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a8309f67285bdfe65c372ea3722b7a5642680f3dba538566340a9d36e920b5f0"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f93a8a2e3938ff656a7c1bc57193b1319960ac015b6e87d76c76bf14fe0244b4"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:22057013c8c1e272eb8d0eebc796701167d8377441ec894a8fed1af64a0bf399"},
|
||||
{file = "pydantic_core-2.18.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:cfeecd1ac6cc1fb2692c3d5110781c965aabd4ec5d32799773ca7b1456ac636b"},
|
||||
{file = "pydantic_core-2.18.2-cp39-none-win32.whl", hash = "sha256:0d69b4c2f6bb3e130dba60d34c0845ba31b69babdd3f78f7c0c8fae5021a253e"},
|
||||
{file = "pydantic_core-2.18.2-cp39-none-win_amd64.whl", hash = "sha256:d9319e499827271b09b4e411905b24a426b8fb69464dfa1696258f53a3334641"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:a1874c6dd4113308bd0eb568418e6114b252afe44319ead2b4081e9b9521fe75"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:ccdd111c03bfd3666bd2472b674c6899550e09e9f298954cfc896ab92b5b0e6d"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e18609ceaa6eed63753037fc06ebb16041d17d28199ae5aba0052c51449650a9"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e5c584d357c4e2baf0ff7baf44f4994be121e16a2c88918a5817331fc7599d7"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43f0f463cf89ace478de71a318b1b4f05ebc456a9b9300d027b4b57c1a2064fb"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:e1b395e58b10b73b07b7cf740d728dd4ff9365ac46c18751bf8b3d8cca8f625a"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:0098300eebb1c837271d3d1a2cd2911e7c11b396eac9661655ee524a7f10587b"},
|
||||
{file = "pydantic_core-2.18.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:36789b70d613fbac0a25bb07ab3d9dba4d2e38af609c020cf4d888d165ee0bf3"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:3f9a801e7c8f1ef8718da265bba008fa121243dfe37c1cea17840b0944dfd72c"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:3a6515ebc6e69d85502b4951d89131ca4e036078ea35533bb76327f8424531ce"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20aca1e2298c56ececfd8ed159ae4dde2df0781988c97ef77d5c16ff4bd5b400"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:223ee893d77a310a0391dca6df00f70bbc2f36a71a895cecd9a0e762dc37b349"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2334ce8c673ee93a1d6a65bd90327588387ba073c17e61bf19b4fd97d688d63c"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:cbca948f2d14b09d20268cda7b0367723d79063f26c4ffc523af9042cad95592"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:b3ef08e20ec49e02d5c6717a91bb5af9b20f1805583cb0adfe9ba2c6b505b5ae"},
|
||||
{file = "pydantic_core-2.18.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c6fdc8627910eed0c01aed6a390a252fe3ea6d472ee70fdde56273f198938374"},
|
||||
{file = "pydantic_core-2.18.2.tar.gz", hash = "sha256:2e29d20810dfc3043ee13ac7d9e25105799817683348823f305ab3f349b9386e"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:f76d0ad001edd426b92233d45c746fd08f467d56100fd8f30e9ace4b005266e4"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:59ff3e89f4eaf14050c8022011862df275b552caef8082e37b542b066ce1ff26"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a55b5b16c839df1070bc113c1f7f94a0af4433fcfa1b41799ce7606e5c79ce0a"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4d0dcc59664fcb8974b356fe0a18a672d6d7cf9f54746c05f43275fc48636851"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8951eee36c57cd128f779e641e21eb40bc5073eb28b2d23f33eb0ef14ffb3f5d"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4701b19f7e3a06ea655513f7938de6f108123bf7c86bbebb1196eb9bd35cf724"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e00a3f196329e08e43d99b79b286d60ce46bed10f2280d25a1718399457e06be"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:97736815b9cc893b2b7f663628e63f436018b75f44854c8027040e05230eeddb"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:6891a2ae0e8692679c07728819b6e2b822fb30ca7445f67bbf6509b25a96332c"},
|
||||
{file = "pydantic_core-2.18.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:bc4ff9805858bd54d1a20efff925ccd89c9d2e7cf4986144b30802bf78091c3e"},
|
||||
{file = "pydantic_core-2.18.4-cp310-none-win32.whl", hash = "sha256:1b4de2e51bbcb61fdebd0ab86ef28062704f62c82bbf4addc4e37fa4b00b7cbc"},
|
||||
{file = "pydantic_core-2.18.4-cp310-none-win_amd64.whl", hash = "sha256:6a750aec7bf431517a9fd78cb93c97b9b0c496090fee84a47a0d23668976b4b0"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:942ba11e7dfb66dc70f9ae66b33452f51ac7bb90676da39a7345e99ffb55402d"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2ebef0e0b4454320274f5e83a41844c63438fdc874ea40a8b5b4ecb7693f1c4"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a642295cd0c8df1b86fc3dced1d067874c353a188dc8e0f744626d49e9aa51c4"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:5f09baa656c904807e832cf9cce799c6460c450c4ad80803517032da0cd062e2"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98906207f29bc2c459ff64fa007afd10a8c8ac080f7e4d5beff4c97086a3dabd"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:19894b95aacfa98e7cb093cd7881a0c76f55731efad31073db4521e2b6ff5b7d"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0fbbdc827fe5e42e4d196c746b890b3d72876bdbf160b0eafe9f0334525119c8"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:f85d05aa0918283cf29a30b547b4df2fbb56b45b135f9e35b6807cb28bc47951"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e85637bc8fe81ddb73fda9e56bab24560bdddfa98aa64f87aaa4e4b6730c23d2"},
|
||||
{file = "pydantic_core-2.18.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:2f5966897e5461f818e136b8451d0551a2e77259eb0f73a837027b47dc95dab9"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win32.whl", hash = "sha256:44c7486a4228413c317952e9d89598bcdfb06399735e49e0f8df643e1ccd0558"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win_amd64.whl", hash = "sha256:8a7164fe2005d03c64fd3b85649891cd4953a8de53107940bf272500ba8a788b"},
|
||||
{file = "pydantic_core-2.18.4-cp311-none-win_arm64.whl", hash = "sha256:4e99bc050fe65c450344421017f98298a97cefc18c53bb2f7b3531eb39bc7805"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:6f5c4d41b2771c730ea1c34e458e781b18cc668d194958e0112455fff4e402b2"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:2fdf2156aa3d017fddf8aea5adfba9f777db1d6022d392b682d2a8329e087cef"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4748321b5078216070b151d5271ef3e7cc905ab170bbfd27d5c83ee3ec436695"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:847a35c4d58721c5dc3dba599878ebbdfd96784f3fb8bb2c356e123bdcd73f34"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3c40d4eaad41f78e3bbda31b89edc46a3f3dc6e171bf0ecf097ff7a0ffff7cb1"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:21a5e440dbe315ab9825fcd459b8814bb92b27c974cbc23c3e8baa2b76890077"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:01dd777215e2aa86dfd664daed5957704b769e726626393438f9c87690ce78c3"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:4b06beb3b3f1479d32befd1f3079cc47b34fa2da62457cdf6c963393340b56e9"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:564d7922e4b13a16b98772441879fcdcbe82ff50daa622d681dd682175ea918c"},
|
||||
{file = "pydantic_core-2.18.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0eb2a4f660fcd8e2b1c90ad566db2b98d7f3f4717c64fe0a83e0adb39766d5b8"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win32.whl", hash = "sha256:8b8bab4c97248095ae0c4455b5a1cd1cdd96e4e4769306ab19dda135ea4cdb07"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win_amd64.whl", hash = "sha256:14601cdb733d741b8958224030e2bfe21a4a881fb3dd6fbb21f071cabd48fa0a"},
|
||||
{file = "pydantic_core-2.18.4-cp312-none-win_arm64.whl", hash = "sha256:c1322d7dd74713dcc157a2b7898a564ab091ca6c58302d5c7b4c07296e3fd00f"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:823be1deb01793da05ecb0484d6c9e20baebb39bd42b5d72636ae9cf8350dbd2"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ebef0dd9bf9b812bf75bda96743f2a6c5734a02092ae7f721c048d156d5fabae"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae1d6df168efb88d7d522664693607b80b4080be6750c913eefb77e34c12c71a"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f9899c94762343f2cc2fc64c13e7cae4c3cc65cdfc87dd810a31654c9b7358cc"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:99457f184ad90235cfe8461c4d70ab7dd2680e28821c29eca00252ba90308c78"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:18f469a3d2a2fdafe99296a87e8a4c37748b5080a26b806a707f25a902c040a8"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b7cdf28938ac6b8b49ae5e92f2735056a7ba99c9b110a474473fd71185c1af5d"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:938cb21650855054dc54dfd9120a851c974f95450f00683399006aa6e8abb057"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:44cd83ab6a51da80fb5adbd9560e26018e2ac7826f9626bc06ca3dc074cd198b"},
|
||||
{file = "pydantic_core-2.18.4-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:972658f4a72d02b8abfa2581d92d59f59897d2e9f7e708fdabe922f9087773af"},
|
||||
{file = "pydantic_core-2.18.4-cp38-none-win32.whl", hash = "sha256:1d886dc848e60cb7666f771e406acae54ab279b9f1e4143babc9c2258213daa2"},
|
||||
{file = "pydantic_core-2.18.4-cp38-none-win_amd64.whl", hash = "sha256:bb4462bd43c2460774914b8525f79b00f8f407c945d50881568f294c1d9b4443"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:44a688331d4a4e2129140a8118479443bd6f1905231138971372fcde37e43528"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a2fdd81edd64342c85ac7cf2753ccae0b79bf2dfa063785503cb85a7d3593223"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:86110d7e1907ab36691f80b33eb2da87d780f4739ae773e5fc83fb272f88825f"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:46387e38bd641b3ee5ce247563b60c5ca098da9c56c75c157a05eaa0933ed154"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:123c3cec203e3f5ac7b000bd82235f1a3eced8665b63d18be751f115588fea30"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dc1803ac5c32ec324c5261c7209e8f8ce88e83254c4e1aebdc8b0a39f9ddb443"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:53db086f9f6ab2b4061958d9c276d1dbe3690e8dd727d6abf2321d6cce37fa94"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:abc267fa9837245cc28ea6929f19fa335f3dc330a35d2e45509b6566dc18be23"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:a0d829524aaefdebccb869eed855e2d04c21d2d7479b6cada7ace5448416597b"},
|
||||
{file = "pydantic_core-2.18.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:509daade3b8649f80d4e5ff21aa5673e4ebe58590b25fe42fac5f0f52c6f034a"},
|
||||
{file = "pydantic_core-2.18.4-cp39-none-win32.whl", hash = "sha256:ca26a1e73c48cfc54c4a76ff78df3727b9d9f4ccc8dbee4ae3f73306a591676d"},
|
||||
{file = "pydantic_core-2.18.4-cp39-none-win_amd64.whl", hash = "sha256:c67598100338d5d985db1b3d21f3619ef392e185e71b8d52bceacc4a7771ea7e"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_10_12_x86_64.whl", hash = "sha256:574d92eac874f7f4db0ca653514d823a0d22e2354359d0759e3f6a406db5d55d"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:1f4d26ceb5eb9eed4af91bebeae4b06c3fb28966ca3a8fb765208cf6b51102ab"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77450e6d20016ec41f43ca4a6c63e9fdde03f0ae3fe90e7c27bdbeaece8b1ed4"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d323a01da91851a4f17bf592faf46149c9169d68430b3146dcba2bb5e5719abc"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:43d447dd2ae072a0065389092a231283f62d960030ecd27565672bd40746c507"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:578e24f761f3b425834f297b9935e1ce2e30f51400964ce4801002435a1b41ef"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:81b5efb2f126454586d0f40c4d834010979cb80785173d1586df845a632e4e6d"},
|
||||
{file = "pydantic_core-2.18.4-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:ab86ce7c8f9bea87b9d12c7f0af71102acbf5ecbc66c17796cff45dae54ef9a5"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:90afc12421df2b1b4dcc975f814e21bc1754640d502a2fbcc6d41e77af5ec312"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:51991a89639a912c17bef4b45c87bd83593aee0437d8102556af4885811d59f5"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:293afe532740370aba8c060882f7d26cfd00c94cae32fd2e212a3a6e3b7bc15e"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b48ece5bde2e768197a2d0f6e925f9d7e3e826f0ad2271120f8144a9db18d5c8"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:eae237477a873ab46e8dd748e515c72c0c804fb380fbe6c85533c7de51f23a8f"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_aarch64.whl", hash = "sha256:834b5230b5dfc0c1ec37b2fda433b271cbbc0e507560b5d1588e2cc1148cf1ce"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-musllinux_1_1_x86_64.whl", hash = "sha256:e858ac0a25074ba4bce653f9b5d0a85b7456eaddadc0ce82d3878c22489fa4ee"},
|
||||
{file = "pydantic_core-2.18.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:2fd41f6eff4c20778d717af1cc50eca52f5afe7805ee530a4fbd0bae284f16e9"},
|
||||
{file = "pydantic_core-2.18.4.tar.gz", hash = "sha256:ec3beeada09ff865c344ff3bc2f427f5e6c26401cc6113d77e372c3fdac73864"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -866,7 +870,6 @@ files = [
|
||||
{file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:855fb52b0dc35af121542a76b9a84f8d1cd886ea97c84703eaa6d88e37a2ad28"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:40df9b996c2b73138957fe23a16a4f0ba614f4c0efce1e9406a184b6d07fa3a9"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a08c6f0fe150303c1c6b71ebcd7213c2858041a7e01975da3a99aed1e7a378ef"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c22bec3fbe2524cde73d7ada88f6566758a8f7227bfbf93a408a9d86bcc12a0"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8d4e9c88387b0f5c7d5f281e55304de64cf7f9c0021a3525bd3b1c542da3b0e4"},
|
||||
{file = "PyYAML-6.0.1-cp312-cp312-win32.whl", hash = "sha256:d483d2cdf104e7c9fa60c544d92981f12ad66a457afae824d146093b8c294c54"},
|
||||
@ -903,13 +906,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "requests"
|
||||
version = "2.31.0"
|
||||
version = "2.32.3"
|
||||
description = "Python HTTP for Humans."
|
||||
optional = false
|
||||
python-versions = ">=3.7"
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
|
||||
{file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
|
||||
{file = "requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6"},
|
||||
{file = "requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -989,13 +992,13 @@ widechars = ["wcwidth"]
|
||||
|
||||
[[package]]
|
||||
name = "tenacity"
|
||||
version = "8.3.0"
|
||||
version = "8.4.2"
|
||||
description = "Retry code until it succeeds"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "tenacity-8.3.0-py3-none-any.whl", hash = "sha256:3649f6443dbc0d9b01b9d8020a9c4ec7a1ff5f6f3c6c8a036ef371f573fe9185"},
|
||||
{file = "tenacity-8.3.0.tar.gz", hash = "sha256:953d4e6ad24357bceffbc9707bc74349aca9d245f68eb65419cf0c249a1949a2"},
|
||||
{file = "tenacity-8.4.2-py3-none-any.whl", hash = "sha256:9e6f7cf7da729125c7437222f8a522279751cdfbe6b67bfe64f75d3a348661b2"},
|
||||
{file = "tenacity-8.4.2.tar.gz", hash = "sha256:cd80a53a79336edba8489e767f729e4f391c896956b57140b5d7511a64bbd3ef"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@ -1015,13 +1018,13 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "types-requests"
|
||||
version = "2.31.0.20240406"
|
||||
version = "2.32.0.20240622"
|
||||
description = "Typing stubs for requests"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "types-requests-2.31.0.20240406.tar.gz", hash = "sha256:4428df33c5503945c74b3f42e82b181e86ec7b724620419a2966e2de604ce1a1"},
|
||||
{file = "types_requests-2.31.0.20240406-py3-none-any.whl", hash = "sha256:6216cdac377c6b9a040ac1c0404f7284bd13199c0e1bb235f4324627e8898cf5"},
|
||||
{file = "types-requests-2.32.0.20240622.tar.gz", hash = "sha256:ed5e8a412fcc39159d6319385c009d642845f250c63902718f605cd90faade31"},
|
||||
{file = "types_requests-2.32.0.20240622-py3-none-any.whl", hash = "sha256:97bac6b54b5bd4cf91d407e62f0932a74821bc2211f22116d9ee1dd643826caf"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1029,13 +1032,13 @@ urllib3 = ">=2"
|
||||
|
||||
[[package]]
|
||||
name = "typing-extensions"
|
||||
version = "4.11.0"
|
||||
version = "4.12.2"
|
||||
description = "Backported and Experimental Type Hints for Python 3.8+"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "typing_extensions-4.11.0-py3-none-any.whl", hash = "sha256:c1f94d72897edaf4ce775bb7558d5b79d8126906a14ea5ed1635921406c0387a"},
|
||||
{file = "typing_extensions-4.11.0.tar.gz", hash = "sha256:83f085bd5ca59c80295fc2a82ab5dac679cbe02b9f33f7d83af68e241bea51b0"},
|
||||
{file = "typing_extensions-4.12.2-py3-none-any.whl", hash = "sha256:04e5ca0351e0f3f85c6853954072df659d0d13fac324d0072316b67d7794700d"},
|
||||
{file = "typing_extensions-4.12.2.tar.gz", hash = "sha256:1a7ead55c7e559dd4dee8856e3a88b41225abfe1ce8df57b7c13915fe121ffb8"},
|
||||
]
|
||||
|
||||
[[package]]
|
||||
@ -1067,40 +1070,43 @@ zstd = ["zstandard (>=0.18.0)"]
|
||||
|
||||
[[package]]
|
||||
name = "watchdog"
|
||||
version = "4.0.0"
|
||||
version = "4.0.1"
|
||||
description = "Filesystem events monitoring"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:39cb34b1f1afbf23e9562501673e7146777efe95da24fab5707b88f7fb11649b"},
|
||||
{file = "watchdog-4.0.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c522392acc5e962bcac3b22b9592493ffd06d1fc5d755954e6be9f4990de932b"},
|
||||
{file = "watchdog-4.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6c47bdd680009b11c9ac382163e05ca43baf4127954c5f6d0250e7d772d2b80c"},
|
||||
{file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8350d4055505412a426b6ad8c521bc7d367d1637a762c70fdd93a3a0d595990b"},
|
||||
{file = "watchdog-4.0.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c17d98799f32e3f55f181f19dd2021d762eb38fdd381b4a748b9f5a36738e935"},
|
||||
{file = "watchdog-4.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4986db5e8880b0e6b7cd52ba36255d4793bf5cdc95bd6264806c233173b1ec0b"},
|
||||
{file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:11e12fafb13372e18ca1bbf12d50f593e7280646687463dd47730fd4f4d5d257"},
|
||||
{file = "watchdog-4.0.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:5369136a6474678e02426bd984466343924d1df8e2fd94a9b443cb7e3aa20d19"},
|
||||
{file = "watchdog-4.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:76ad8484379695f3fe46228962017a7e1337e9acadafed67eb20aabb175df98b"},
|
||||
{file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:45cc09cc4c3b43fb10b59ef4d07318d9a3ecdbff03abd2e36e77b6dd9f9a5c85"},
|
||||
{file = "watchdog-4.0.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:eed82cdf79cd7f0232e2fdc1ad05b06a5e102a43e331f7d041e5f0e0a34a51c4"},
|
||||
{file = "watchdog-4.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ba30a896166f0fee83183cec913298151b73164160d965af2e93a20bbd2ab605"},
|
||||
{file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d18d7f18a47de6863cd480734613502904611730f8def45fc52a5d97503e5101"},
|
||||
{file = "watchdog-4.0.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:2895bf0518361a9728773083908801a376743bcc37dfa252b801af8fd281b1ca"},
|
||||
{file = "watchdog-4.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87e9df830022488e235dd601478c15ad73a0389628588ba0b028cb74eb72fed8"},
|
||||
{file = "watchdog-4.0.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6e949a8a94186bced05b6508faa61b7adacc911115664ccb1923b9ad1f1ccf7b"},
|
||||
{file = "watchdog-4.0.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:6a4db54edea37d1058b08947c789a2354ee02972ed5d1e0dca9b0b820f4c7f92"},
|
||||
{file = "watchdog-4.0.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d31481ccf4694a8416b681544c23bd271f5a123162ab603c7d7d2dd7dd901a07"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8fec441f5adcf81dd240a5fe78e3d83767999771630b5ddfc5867827a34fa3d3"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_armv7l.whl", hash = "sha256:6a9c71a0b02985b4b0b6d14b875a6c86ddea2fdbebd0c9a720a806a8bbffc69f"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_i686.whl", hash = "sha256:557ba04c816d23ce98a06e70af6abaa0485f6d94994ec78a42b05d1c03dcbd50"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64.whl", hash = "sha256:d0f9bd1fd919134d459d8abf954f63886745f4660ef66480b9d753a7c9d40927"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f9b2fdca47dc855516b2d66eef3c39f2672cbf7e7a42e7e67ad2cbfcd6ba107d"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_s390x.whl", hash = "sha256:73c7a935e62033bd5e8f0da33a4dcb763da2361921a69a5a95aaf6c93aa03a87"},
|
||||
{file = "watchdog-4.0.0-py3-none-manylinux2014_x86_64.whl", hash = "sha256:6a80d5cae8c265842c7419c560b9961561556c4361b297b4c431903f8c33b269"},
|
||||
{file = "watchdog-4.0.0-py3-none-win32.whl", hash = "sha256:8f9a542c979df62098ae9c58b19e03ad3df1c9d8c6895d96c0d51da17b243b1c"},
|
||||
{file = "watchdog-4.0.0-py3-none-win_amd64.whl", hash = "sha256:f970663fa4f7e80401a7b0cbeec00fa801bf0287d93d48368fc3e6fa32716245"},
|
||||
{file = "watchdog-4.0.0-py3-none-win_ia64.whl", hash = "sha256:9a03e16e55465177d416699331b0f3564138f1807ecc5f2de9d55d8f188d08c7"},
|
||||
{file = "watchdog-4.0.0.tar.gz", hash = "sha256:e3e7065cbdabe6183ab82199d7a4f6b3ba0a438c5a512a68559846ccb76a78ec"},
|
||||
{file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:da2dfdaa8006eb6a71051795856bedd97e5b03e57da96f98e375682c48850645"},
|
||||
{file = "watchdog-4.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e93f451f2dfa433d97765ca2634628b789b49ba8b504fdde5837cdcf25fdb53b"},
|
||||
{file = "watchdog-4.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ef0107bbb6a55f5be727cfc2ef945d5676b97bffb8425650dadbb184be9f9a2b"},
|
||||
{file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:17e32f147d8bf9657e0922c0940bcde863b894cd871dbb694beb6704cfbd2fb5"},
|
||||
{file = "watchdog-4.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:03e70d2df2258fb6cb0e95bbdbe06c16e608af94a3ffbd2b90c3f1e83eb10767"},
|
||||
{file = "watchdog-4.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:123587af84260c991dc5f62a6e7ef3d1c57dfddc99faacee508c71d287248459"},
|
||||
{file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:093b23e6906a8b97051191a4a0c73a77ecc958121d42346274c6af6520dec175"},
|
||||
{file = "watchdog-4.0.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:611be3904f9843f0529c35a3ff3fd617449463cb4b73b1633950b3d97fa4bfb7"},
|
||||
{file = "watchdog-4.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:62c613ad689ddcb11707f030e722fa929f322ef7e4f18f5335d2b73c61a85c28"},
|
||||
{file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:d4925e4bf7b9bddd1c3de13c9b8a2cdb89a468f640e66fbfabaf735bd85b3e35"},
|
||||
{file = "watchdog-4.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:cad0bbd66cd59fc474b4a4376bc5ac3fc698723510cbb64091c2a793b18654db"},
|
||||
{file = "watchdog-4.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a3c2c317a8fb53e5b3d25790553796105501a235343f5d2bf23bb8649c2c8709"},
|
||||
{file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9904904b6564d4ee8a1ed820db76185a3c96e05560c776c79a6ce5ab71888ba"},
|
||||
{file = "watchdog-4.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:667f3c579e813fcbad1b784db7a1aaa96524bed53437e119f6a2f5de4db04235"},
|
||||
{file = "watchdog-4.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d10a681c9a1d5a77e75c48a3b8e1a9f2ae2928eda463e8d33660437705659682"},
|
||||
{file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:0144c0ea9997b92615af1d94afc0c217e07ce2c14912c7b1a5731776329fcfc7"},
|
||||
{file = "watchdog-4.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:998d2be6976a0ee3a81fb8e2777900c28641fb5bfbd0c84717d89bca0addcdc5"},
|
||||
{file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e7921319fe4430b11278d924ef66d4daa469fafb1da679a2e48c935fa27af193"},
|
||||
{file = "watchdog-4.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl", hash = "sha256:f0de0f284248ab40188f23380b03b59126d1479cd59940f2a34f8852db710625"},
|
||||
{file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:bca36be5707e81b9e6ce3208d92d95540d4ca244c006b61511753583c81c70dd"},
|
||||
{file = "watchdog-4.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl", hash = "sha256:ab998f567ebdf6b1da7dc1e5accfaa7c6992244629c0fdaef062f43249bd8dee"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_aarch64.whl", hash = "sha256:dddba7ca1c807045323b6af4ff80f5ddc4d654c8bce8317dde1bd96b128ed253"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_armv7l.whl", hash = "sha256:4513ec234c68b14d4161440e07f995f231be21a09329051e67a2118a7a612d2d"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_i686.whl", hash = "sha256:4107ac5ab936a63952dea2a46a734a23230aa2f6f9db1291bf171dac3ebd53c6"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64.whl", hash = "sha256:6e8c70d2cd745daec2a08734d9f63092b793ad97612470a0ee4cbb8f5f705c57"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:f27279d060e2ab24c0aa98363ff906d2386aa6c4dc2f1a374655d4e02a6c5e5e"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_s390x.whl", hash = "sha256:f8affdf3c0f0466e69f5b3917cdd042f89c8c63aebdb9f7c078996f607cdb0f5"},
|
||||
{file = "watchdog-4.0.1-py3-none-manylinux2014_x86_64.whl", hash = "sha256:ac7041b385f04c047fcc2951dc001671dee1b7e0615cde772e84b01fbf68ee84"},
|
||||
{file = "watchdog-4.0.1-py3-none-win32.whl", hash = "sha256:206afc3d964f9a233e6ad34618ec60b9837d0582b500b63687e34011e15bb429"},
|
||||
{file = "watchdog-4.0.1-py3-none-win_amd64.whl", hash = "sha256:7577b3c43e5909623149f76b099ac49a1a01ca4e167d1785c76eb52fa585745a"},
|
||||
{file = "watchdog-4.0.1-py3-none-win_ia64.whl", hash = "sha256:d7b9f5f3299e8dd230880b6c55504a1f69cf1e4316275d1b215ebdd8187ec88d"},
|
||||
{file = "watchdog-4.0.1.tar.gz", hash = "sha256:eebaacf674fa25511e8867028d281e602ee6500045b57f43b08778082f7f8b44"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
@ -1108,20 +1114,20 @@ watchmedo = ["PyYAML (>=3.10)"]
|
||||
|
||||
[[package]]
|
||||
name = "zipp"
|
||||
version = "3.18.1"
|
||||
version = "3.19.2"
|
||||
description = "Backport of pathlib-compatible object wrapper for zip files"
|
||||
optional = false
|
||||
python-versions = ">=3.8"
|
||||
files = [
|
||||
{file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
|
||||
{file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
|
||||
{file = "zipp-3.19.2-py3-none-any.whl", hash = "sha256:f091755f667055f2d02b32c53771a7a6c8b47e1fdbc4b72a8b9072b3eef8015c"},
|
||||
{file = "zipp-3.19.2.tar.gz", hash = "sha256:bf1dcf6450f873a13e952a29504887c89e6de7506209e5b1bcc3460135d4de19"},
|
||||
]
|
||||
|
||||
[package.extras]
|
||||
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
|
||||
doc = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
|
||||
test = ["big-O", "importlib-resources", "jaraco.functools", "jaraco.itertools", "jaraco.test", "more-itertools", "pytest (>=6,!=8.1.*)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
|
||||
|
||||
[metadata]
|
||||
lock-version = "2.0"
|
||||
python-versions = ">=3.10,<4.0"
|
||||
content-hash = "4ee7eb72c61697f46434280fe94002e6d419d0394d334407d0edfbf963370d48"
|
||||
content-hash = "a6472e2dca29fdda0169f09cbd92622406d9da95ca5f5d13ed6c2f2c750e968a"
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "langchain-ibm"
|
||||
version = "0.1.7"
|
||||
version = "0.1.8"
|
||||
description = "An integration package connecting IBM watsonx.ai and LangChain"
|
||||
authors = ["IBM"]
|
||||
readme = "README.md"
|
||||
@ -12,8 +12,8 @@ license = "MIT"
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
python = ">=3.10,<4.0"
|
||||
langchain-core = ">=0.1.50,<0.3"
|
||||
ibm-watsonx-ai = "^1.0.1"
|
||||
langchain-core = ">=0.2.2,<0.3"
|
||||
ibm-watsonx-ai = "^1.0.8"
|
||||
|
||||
[tool.poetry.group.test]
|
||||
optional = true
|
||||
|
193
libs/partners/ibm/tests/integration_tests/test_chat_models.py
Normal file
193
libs/partners/ibm/tests/integration_tests/test_chat_models.py
Normal file
@ -0,0 +1,193 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames # type: ignore
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
|
||||
WX_APIKEY = os.environ.get("WATSONX_APIKEY", "")
|
||||
WX_PROJECT_ID = os.environ.get("WATSONX_PROJECT_ID", "")
|
||||
|
||||
URL = "https://us-south.ml.cloud.ibm.com"
|
||||
MODEL_ID = "mistralai/mixtral-8x7b-instruct-v01"
|
||||
|
||||
|
||||
def test_01_generate_chat() -> None:
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
messages = [
|
||||
("system", "You are a helpful assistant that translates English to French."),
|
||||
(
|
||||
"human",
|
||||
"Translate this sentence from English to French. I love programming.",
|
||||
),
|
||||
]
|
||||
response = chat.invoke(messages)
|
||||
assert response
|
||||
|
||||
|
||||
def test_01a_generate_chat_with_invoke_params() -> None:
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
|
||||
|
||||
params = {
|
||||
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
|
||||
GenTextParamsMetaNames.MAX_NEW_TOKENS: 10,
|
||||
}
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
messages = [
|
||||
("system", "You are a helpful assistant that translates English to French."),
|
||||
(
|
||||
"human",
|
||||
"Translate this sentence from English to French. I love programming.",
|
||||
),
|
||||
]
|
||||
response = chat.invoke(messages, params=params)
|
||||
assert response
|
||||
|
||||
|
||||
def test_02_generate_chat_with_few_inputs() -> None:
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
message = HumanMessage(content="Hello")
|
||||
response = chat.generate([[message], [message]])
|
||||
assert response
|
||||
|
||||
|
||||
def test_03_generate_chat_with_few_various_inputs() -> None:
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
system_message = SystemMessage(content="You are to chat with the user.")
|
||||
human_message = HumanMessage(content="Hello")
|
||||
response = chat.invoke([system_message, human_message])
|
||||
assert isinstance(response, BaseMessage)
|
||||
assert isinstance(response.content, str)
|
||||
|
||||
|
||||
def test_05_generate_chat_with_stream() -> None:
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
response = chat.stream("What's the weather in san francisco")
|
||||
for chunk in response:
|
||||
assert isinstance(chunk.content, str)
|
||||
|
||||
|
||||
def test_10_chaining() -> None:
|
||||
chat = ChatWatsonx(model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID)
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"You are a helpful assistant that "
|
||||
"translates {input_language} to {output_language}.",
|
||||
),
|
||||
("human", "{input}"),
|
||||
]
|
||||
)
|
||||
chain = prompt | chat
|
||||
|
||||
response = chain.invoke(
|
||||
{
|
||||
"input_language": "English",
|
||||
"output_language": "German",
|
||||
"input": "I love programming.",
|
||||
}
|
||||
)
|
||||
assert response
|
||||
|
||||
|
||||
def test_11_chaining_with_params() -> None:
|
||||
parameters = {
|
||||
GenTextParamsMetaNames.DECODING_METHOD: "sample",
|
||||
GenTextParamsMetaNames.MIN_NEW_TOKENS: 5,
|
||||
GenTextParamsMetaNames.MAX_NEW_TOKENS: 10,
|
||||
}
|
||||
chat = ChatWatsonx(
|
||||
model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID, params=parameters
|
||||
)
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[
|
||||
(
|
||||
"system",
|
||||
"You are a helpful assistant that translates "
|
||||
"{input_language} to {output_language}.",
|
||||
),
|
||||
("human", "{input}"),
|
||||
]
|
||||
)
|
||||
chain = prompt | chat
|
||||
|
||||
response = chain.invoke(
|
||||
{
|
||||
"input_language": "English",
|
||||
"output_language": "German",
|
||||
"input": "I love programming.",
|
||||
}
|
||||
)
|
||||
assert response
|
||||
|
||||
|
||||
def test_20_tool_choice() -> None:
|
||||
"""Test that tool choice is respected."""
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
|
||||
|
||||
params = {GenTextParamsMetaNames.MAX_NEW_TOKENS: 500}
|
||||
chat = ChatWatsonx(
|
||||
model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID, params=params
|
||||
)
|
||||
|
||||
class MyTool(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
with_tool = chat.bind_tools([MyTool], tool_choice="MyTool")
|
||||
|
||||
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
||||
assert isinstance(resp, AIMessage)
|
||||
assert resp.content == "" # should just be tool call
|
||||
tool_calls = resp.additional_kwargs["tool_calls"]
|
||||
assert len(tool_calls) == 1
|
||||
tool_call = tool_calls[0]
|
||||
assert tool_call["function"]["name"] == "MyTool"
|
||||
assert json.loads(tool_call["function"]["arguments"]) == {
|
||||
"age": 27,
|
||||
"name": "Erick",
|
||||
}
|
||||
assert tool_call["type"] == "function"
|
||||
assert isinstance(resp.tool_calls, list)
|
||||
assert len(resp.tool_calls) == 1
|
||||
tool_call = resp.tool_calls[0]
|
||||
assert tool_call["name"] == "MyTool"
|
||||
assert tool_call["args"] == {"age": 27, "name": "Erick"}
|
||||
|
||||
|
||||
def test_21_tool_choice_bool() -> None:
|
||||
"""Test that tool choice is respected just passing in True."""
|
||||
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
|
||||
|
||||
params = {GenTextParamsMetaNames.MAX_NEW_TOKENS: 500}
|
||||
chat = ChatWatsonx(
|
||||
model_id=MODEL_ID, url=URL, project_id=WX_PROJECT_ID, params=params
|
||||
)
|
||||
|
||||
class MyTool(BaseModel):
|
||||
name: str
|
||||
age: int
|
||||
|
||||
with_tool = chat.bind_tools([MyTool], tool_choice=True)
|
||||
|
||||
resp = with_tool.invoke("Who was the 27 year old named Erick?")
|
||||
assert isinstance(resp, AIMessage)
|
||||
assert resp.content == "" # should just be tool call
|
||||
tool_calls = resp.additional_kwargs["tool_calls"]
|
||||
assert len(tool_calls) == 1
|
||||
tool_call = tool_calls[0]
|
||||
assert tool_call["function"]["name"] == "MyTool"
|
||||
assert json.loads(tool_call["function"]["arguments"]) == {
|
||||
"age": 27,
|
||||
"name": "Erick",
|
||||
}
|
||||
assert tool_call["type"] == "function"
|
62
libs/partners/ibm/tests/unit_tests/test_chat_models.py
Normal file
62
libs/partners/ibm/tests/unit_tests/test_chat_models.py
Normal file
@ -0,0 +1,62 @@
|
||||
"""Test ChatWatsonx API wrapper."""
|
||||
|
||||
import os
|
||||
|
||||
from langchain_ibm import ChatWatsonx
|
||||
|
||||
os.environ.pop("WATSONX_APIKEY", None)
|
||||
os.environ.pop("WATSONX_PROJECT_ID", None)
|
||||
|
||||
MODEL_ID = "mistralai/mixtral-8x7b-instruct-v01"
|
||||
|
||||
|
||||
def test_initialize_chat_watsonx_bad_path_without_url() -> None:
|
||||
try:
|
||||
ChatWatsonx(
|
||||
model_id=MODEL_ID,
|
||||
)
|
||||
except ValueError as e:
|
||||
assert "WATSONX_URL" in e.__str__()
|
||||
|
||||
|
||||
def test_initialize_chat_watsonx_cloud_bad_path() -> None:
|
||||
try:
|
||||
ChatWatsonx(model_id=MODEL_ID, url="https://us-south.ml.cloud.ibm.com")
|
||||
except ValueError as e:
|
||||
assert "WATSONX_APIKEY" in e.__str__()
|
||||
|
||||
|
||||
def test_initialize_chat_watsonx_cpd_bad_path_without_all() -> None:
|
||||
try:
|
||||
ChatWatsonx(
|
||||
model_id=MODEL_ID,
|
||||
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
|
||||
)
|
||||
except ValueError as e:
|
||||
assert (
|
||||
"WATSONX_APIKEY" in e.__str__()
|
||||
and "WATSONX_PASSWORD" in e.__str__()
|
||||
and "WATSONX_TOKEN" in e.__str__()
|
||||
)
|
||||
|
||||
|
||||
def test_initialize_chat_watsonx_cpd_bad_path_password_without_username() -> None:
|
||||
try:
|
||||
ChatWatsonx(
|
||||
model_id=MODEL_ID,
|
||||
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
|
||||
password="test_password",
|
||||
)
|
||||
except ValueError as e:
|
||||
assert "WATSONX_USERNAME" in e.__str__()
|
||||
|
||||
|
||||
def test_initialize_chat_watsonx_cpd_bad_path_apikey_without_username() -> None:
|
||||
try:
|
||||
ChatWatsonx(
|
||||
model_id=MODEL_ID,
|
||||
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
|
||||
apikey="test_apikey",
|
||||
)
|
||||
except ValueError as e:
|
||||
assert "WATSONX_USERNAME" in e.__str__()
|
@ -1,6 +1,6 @@
|
||||
from langchain_ibm import __all__
|
||||
|
||||
EXPECTED_ALL = ["WatsonxLLM", "WatsonxEmbeddings"]
|
||||
EXPECTED_ALL = ["WatsonxLLM", "WatsonxEmbeddings", "ChatWatsonx"]
|
||||
|
||||
|
||||
def test_all_imports() -> None:
|
||||
|
Loading…
Reference in New Issue
Block a user