openai[patch]: delete redundant tests (#31004)

These are covered by standard tests.
This commit is contained in:
ccurme 2025-04-24 13:56:32 -04:00 committed by GitHub
parent d0f0d1f966
commit a7903280dd
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -170,48 +170,6 @@ def test_chat_openai_invalid_streaming_params() -> None:
ChatOpenAI(max_tokens=MAX_TOKEN_COUNT, streaming=True, temperature=0, n=5) # type: ignore[call-arg]
@pytest.mark.scheduled
async def test_async_chat_openai() -> None:
"""Test async generation."""
chat = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT, n=2) # type: ignore[call-arg]
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
assert response.llm_output
for generations in response.generations:
assert len(generations) == 2
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_streaming() -> None:
"""Test that streaming correctly invokes on_llm_new_token callback."""
callback_handler = FakeCallbackHandler()
callback_manager = CallbackManager([callback_handler])
chat = ChatOpenAI(
max_tokens=MAX_TOKEN_COUNT, # type: ignore[call-arg]
streaming=True,
temperature=0,
callback_manager=callback_manager,
verbose=True,
)
message = HumanMessage(content="Hello")
response = await chat.agenerate([[message], [message]])
assert callback_handler.llm_streams > 0
assert isinstance(response, LLMResult)
assert len(response.generations) == 2
for generations in response.generations:
assert len(generations) == 1
for generation in generations:
assert isinstance(generation, ChatGeneration)
assert isinstance(generation.text, str)
assert generation.text == generation.message.content
@pytest.mark.scheduled
async def test_async_chat_openai_bind_functions() -> None:
"""Test ChatOpenAI wrapper with multiple completions."""
@ -244,34 +202,6 @@ async def test_async_chat_openai_bind_functions() -> None:
assert isinstance(generation, AIMessage)
@pytest.mark.scheduled
def test_openai_streaming() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
for token in llm.stream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_astream() -> None:
"""Test streaming tokens from OpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
async for token in llm.astream("I'm Pickle Rick"):
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
@pytest.mark.parametrize("use_responses_api", [False, True])
async def test_openai_abatch_tags(use_responses_api: bool) -> None:
@ -285,25 +215,6 @@ async def test_openai_abatch_tags(use_responses_api: bool) -> None:
assert isinstance(token.text(), str)
@pytest.mark.scheduled
def test_openai_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
@pytest.mark.scheduled
async def test_openai_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI(max_tokens=MAX_TOKEN_COUNT) # type: ignore[call-arg]
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
@pytest.mark.scheduled
def test_openai_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
@ -413,15 +324,6 @@ async def test_astream() -> None:
await _test_stream(llm.astream("Hello", stream_usage=False), expect_usage=False)
async def test_abatch() -> None:
"""Test streaming tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.abatch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_abatch_tags() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
@ -433,33 +335,6 @@ async def test_abatch_tags() -> None:
assert isinstance(token.content, str)
def test_batch() -> None:
"""Test batch tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.batch(["I'm Pickle Rick", "I'm not Pickle Rick"])
for token in result:
assert isinstance(token.content, str)
async def test_ainvoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = await llm.ainvoke("I'm Pickle Rick", config={"tags": ["foo"]})
assert isinstance(result.content, str)
assert result.response_metadata.get("model_name") is not None
def test_invoke() -> None:
"""Test invoke tokens from ChatOpenAI."""
llm = ChatOpenAI()
result = llm.invoke("I'm Pickle Rick", config=dict(tags=["foo"]))
assert isinstance(result.content, str)
assert result.response_metadata.get("model_name") is not None
def test_response_metadata() -> None:
llm = ChatOpenAI()
result = llm.invoke([HumanMessage(content="I'm PickleRick")], logprobs=True)
@ -985,45 +860,6 @@ def test_json_schema_openai_format(
assert isinstance(result, dict)
def test_json_mode() -> None:
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
response = llm.invoke(
"Return this as json: {'a': 1}. Do not return anything other than json. Do not include markdown codeblocks.", # noqa: E501
response_format={"type": "json_object"},
)
assert isinstance(response.content, str)
assert json.loads(response.content) == {"a": 1}
# Test streaming
full: Optional[BaseMessageChunk] = None
for chunk in llm.stream(
"Return this as json: {'a': 1}", response_format={"type": "json_object"}
):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, str)
assert json.loads(full.content) == {"a": 1}
async def test_json_mode_async() -> None:
llm = ChatOpenAI(model="gpt-4o-mini", temperature=0)
response = await llm.ainvoke(
"Return this as json: {'a': 1}. Do not return anything other than json. Do not include markdown codeblocks." # noqa: E501
)
assert isinstance(response.content, str)
assert json.loads(response.content) == {"a": 1}
# Test streaming
full: Optional[BaseMessageChunk] = None
async for chunk in llm.astream(
"Return this as json: {'a': 1}", response_format={"type": "json_object"}
):
full = chunk if full is None else full + chunk
assert isinstance(full, AIMessageChunk)
assert isinstance(full.content, str)
assert json.loads(full.content) == {"a": 1}
def test_audio_output_modality() -> None:
llm = ChatOpenAI(
model="gpt-4o-audio-preview",