mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-17 07:26:16 +00:00
community[minor]: Added VLite as VectorStore (#20245)
Support [VLite](https://github.com/sdan/vlite) as a new VectorStore type. **Description**: vlite is a simple and blazing fast vector database(vdb) made with numpy. It abstracts a lot of the functionality around using a vdb in the retrieval augmented generation(RAG) pipeline such as embeddings generation, chunking, and file processing while still giving developers the functionality to change how they're made/stored. **Before submitting**: Added tests [here](c09c2ebd5c/libs/community/tests/integration_tests/vectorstores/test_vlite.py
) Added ipython notebook [here](c09c2ebd5c/docs/docs/integrations/vectorstores/vlite.ipynb
) Added simple docs on how to use [here](c09c2ebd5c/docs/docs/integrations/providers/vlite.mdx
) **Profiles** Maintainers: @sdan Twitter handles: [@sdand](https://x.com/sdand) --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
31
docs/docs/integrations/providers/vlite.mdx
Normal file
31
docs/docs/integrations/providers/vlite.mdx
Normal file
@@ -0,0 +1,31 @@
|
||||
# vlite
|
||||
|
||||
This page covers how to use [vlite](https://github.com/sdan/vlite) within LangChain. vlite is a simple and fast vector database for storing and retrieving embeddings.
|
||||
|
||||
## Installation and Setup
|
||||
|
||||
To install vlite, run the following command:
|
||||
|
||||
```bash
|
||||
pip install vlite
|
||||
```
|
||||
|
||||
For PDF OCR support, install the `vlite[ocr]` extra:
|
||||
|
||||
```bash
|
||||
pip install vlite[ocr]
|
||||
```
|
||||
|
||||
## VectorStore
|
||||
|
||||
vlite provides a wrapper around its vector database, allowing you to use it as a vectorstore for semantic search and example selection.
|
||||
|
||||
To import the vlite vectorstore:
|
||||
|
||||
```python
|
||||
from langchain_community.vectorstores import vlite
|
||||
```
|
||||
|
||||
### Usage
|
||||
|
||||
For a more detailed walkthrough of the vlite wrapper, see [this notebook](/docs/integrations/vectorstores/vlite).
|
186
docs/docs/integrations/vectorstores/vlite.ipynb
Normal file
186
docs/docs/integrations/vectorstores/vlite.ipynb
Normal file
@@ -0,0 +1,186 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"\n",
|
||||
"# vlite\n",
|
||||
"\n",
|
||||
"VLite is a simple and blazing fast vector database that allows you to store and retrieve data semantically using embeddings. Made with numpy, vlite is a lightweight batteries-included database to implement RAG, similarity search, and embeddings into your projects.\n",
|
||||
"\n",
|
||||
"## Installation\n",
|
||||
"\n",
|
||||
"To use the VLite in LangChain, you need to install the `vlite` package:\n",
|
||||
"\n",
|
||||
"```bash\n",
|
||||
"!pip install vlite\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Importing VLite\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from langchain.vectorstores import VLite\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Basic Example\n",
|
||||
"\n",
|
||||
"In this basic example, we load a text document, and store them in the VLite vector database. Then, we perform a similarity search to retrieve relevant documents based on a query.\n",
|
||||
"\n",
|
||||
"VLite handles chunking and embedding of the text for you, and you can change these parameters by pre-chunking the text and/or embeddings those chunks into the VLite database.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from langchain.document_loaders import TextLoader\n",
|
||||
"from langchain.text_splitter import CharacterTextSplitter\n",
|
||||
"\n",
|
||||
"# Load the document and split it into chunks\n",
|
||||
"loader = TextLoader(\"path/to/document.txt\")\n",
|
||||
"documents = loader.load()\n",
|
||||
"\n",
|
||||
"# Create a VLite instance\n",
|
||||
"vlite = VLite(collection=\"my_collection\")\n",
|
||||
"\n",
|
||||
"# Add documents to the VLite vector database\n",
|
||||
"vlite.add_documents(documents)\n",
|
||||
"\n",
|
||||
"# Perform a similarity search\n",
|
||||
"query = \"What is the main topic of the document?\"\n",
|
||||
"docs = vlite.similarity_search(query)\n",
|
||||
"\n",
|
||||
"# Print the most relevant document\n",
|
||||
"print(docs[0].page_content)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Adding Texts and Documents\n",
|
||||
"\n",
|
||||
"You can add texts or documents to the VLite vector database using the `add_texts` and `add_documents` methods, respectively.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Add texts to the VLite vector database\n",
|
||||
"texts = [\"This is the first text.\", \"This is the second text.\"]\n",
|
||||
"vlite.add_texts(texts)\n",
|
||||
"\n",
|
||||
"# Add documents to the VLite vector database\n",
|
||||
"documents = [Document(page_content=\"This is a document.\", metadata={\"source\": \"example.txt\"})]\n",
|
||||
"vlite.add_documents(documents)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Similarity Search\n",
|
||||
"\n",
|
||||
"VLite provides methods for performing similarity search on the stored documents.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Perform a similarity search\n",
|
||||
"query = \"What is the main topic of the document?\"\n",
|
||||
"docs = vlite.similarity_search(query, k=3)\n",
|
||||
"\n",
|
||||
"# Perform a similarity search with scores\n",
|
||||
"docs_with_scores = vlite.similarity_search_with_score(query, k=3)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Max Marginal Relevance Search\n",
|
||||
"\n",
|
||||
"VLite also supports Max Marginal Relevance (MMR) search, which optimizes for both similarity to the query and diversity among the retrieved documents.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Perform an MMR search\n",
|
||||
"docs = vlite.max_marginal_relevance_search(query, k=3)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Updating and Deleting Documents\n",
|
||||
"\n",
|
||||
"You can update or delete documents in the VLite vector database using the `update_document` and `delete` methods.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Update a document\n",
|
||||
"document_id = \"doc_id_1\"\n",
|
||||
"updated_document = Document(page_content=\"Updated content\", metadata={\"source\": \"updated.txt\"})\n",
|
||||
"vlite.update_document(document_id, updated_document)\n",
|
||||
"\n",
|
||||
"# Delete documents\n",
|
||||
"document_ids = [\"doc_id_1\", \"doc_id_2\"]\n",
|
||||
"vlite.delete(document_ids)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Retrieving Documents\n",
|
||||
"\n",
|
||||
"You can retrieve documents from the VLite vector database based on their IDs or metadata using the `get` method.\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Retrieve documents by IDs\n",
|
||||
"document_ids = [\"doc_id_1\", \"doc_id_2\"]\n",
|
||||
"docs = vlite.get(ids=document_ids)\n",
|
||||
"\n",
|
||||
"# Retrieve documents by metadata\n",
|
||||
"metadata_filter = {\"source\": \"example.txt\"}\n",
|
||||
"docs = vlite.get(where=metadata_filter)\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Creating VLite Instances\n",
|
||||
"\n",
|
||||
"You can create VLite instances using various methods:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"# Create a VLite instance from texts\n",
|
||||
"vlite = VLite.from_texts(texts)\n",
|
||||
"\n",
|
||||
"# Create a VLite instance from documents\n",
|
||||
"vlite = VLite.from_documents(documents)\n",
|
||||
"\n",
|
||||
"# Create a VLite instance from an existing index\n",
|
||||
"vlite = VLite.from_existing_index(collection=\"existing_collection\")\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"## Additional Features\n",
|
||||
"\n",
|
||||
"VLite provides additional features for managing the vector database:\n",
|
||||
"\n",
|
||||
"```python\n",
|
||||
"from langchain.vectorstores import VLite\n",
|
||||
"vlite = VLite(collection=\"my_collection\")\n",
|
||||
"\n",
|
||||
"# Get the number of items in the collection\n",
|
||||
"count = vlite.count()\n",
|
||||
"\n",
|
||||
"# Save the collection\n",
|
||||
"vlite.save()\n",
|
||||
"\n",
|
||||
"# Clear the collection\n",
|
||||
"vlite.clear()\n",
|
||||
"\n",
|
||||
"# Get collection information\n",
|
||||
"vlite.info()\n",
|
||||
"\n",
|
||||
"# Dump the collection data\n",
|
||||
"data = vlite.dump()\n",
|
||||
"```"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3 (ipykernel)",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.9.7"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
Reference in New Issue
Block a user