mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
community[minor]: add support for Guardrails for Amazon Bedrock (#15099)
Added support for optionally supplying 'Guardrails for Amazon Bedrock' on both types of model invocations (batch/regular and streaming) and for all models supported by the Amazon Bedrock service. @baskaryan @hwchase17 ```python llm = Bedrock(model_id="<model_id>", client=bedrock, model_kwargs={}, guardrails={"id": " <guardrail_id>", "version": "<guardrail_version>", "trace": True}, callbacks=[BedrockAsyncCallbackHandler()]) class BedrockAsyncCallbackHandler(AsyncCallbackHandler): """Async callback handler that can be used to handle callbacks from langchain.""" async def on_llm_error( self, error: BaseException, **kwargs: Any, ) -> Any: reason = kwargs.get("reason") if reason == "GUARDRAIL_INTERVENED": # kwargs contains additional trace information sent by 'Guardrails for Bedrock' service. print(f"""Guardrails: {kwargs}""") # streaming llm = Bedrock(model_id="<model_id>", client=bedrock, model_kwargs={}, streaming=True, guardrails={"id": "<guardrail_id>", "version": "<guardrail_version>"}) ``` --------- Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -106,6 +106,45 @@
|
||||
"\n",
|
||||
"conversation.predict(input=\"Hi there!\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"### Guardrails for Amazon Bedrock example \n",
|
||||
"\n",
|
||||
"In this section, we are going to set up a Bedrock language model with specific guardrails that include tracing capabilities. "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from typing import Any\n",
|
||||
"\n",
|
||||
"from langchain_core.callbacks import AsyncCallbackHandler\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class BedrockAsyncCallbackHandler(AsyncCallbackHandler):\n",
|
||||
" # Async callback handler that can be used to handle callbacks from langchain.\n",
|
||||
"\n",
|
||||
" async def on_llm_error(self, error: BaseException, **kwargs: Any) -> Any:\n",
|
||||
" reason = kwargs.get(\"reason\")\n",
|
||||
" if reason == \"GUARDRAIL_INTERVENED\":\n",
|
||||
" print(f\"Guardrails: {kwargs}\")\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# guardrails for Amazon Bedrock with trace\n",
|
||||
"llm = Bedrock(\n",
|
||||
" credentials_profile_name=\"bedrock-admin\",\n",
|
||||
" model_id=\"<Model_ID>\",\n",
|
||||
" model_kwargs={},\n",
|
||||
" guardrails={\"id\": \"<Guardrail_ID>\", \"version\": \"<Version>\", \"trace\": True},\n",
|
||||
" callbacks=[BedrockAsyncCallbackHandler()],\n",
|
||||
")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
|
Reference in New Issue
Block a user