mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-12 15:59:56 +00:00
rfc: multi action agent (#2362)
This commit is contained in:
parent
1140bd79a0
commit
a9e637b8f5
217
docs/modules/agents/agents/custom_multi_action_agent.ipynb
Normal file
217
docs/modules/agents/agents/custom_multi_action_agent.ipynb
Normal file
@ -0,0 +1,217 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"id": "ba5f8741",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"# Custom MultiAction Agent\n",
|
||||||
|
"\n",
|
||||||
|
"This notebook goes through how to create your own custom agent.\n",
|
||||||
|
"\n",
|
||||||
|
"An agent consists of three parts:\n",
|
||||||
|
" \n",
|
||||||
|
" - Tools: The tools the agent has available to use.\n",
|
||||||
|
" - The agent class itself: this decides which action to take.\n",
|
||||||
|
" \n",
|
||||||
|
" \n",
|
||||||
|
"In this notebook we walk through how to create a custom agent that predicts/takes multiple steps at a time."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"id": "9af9734e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from langchain.agents import Tool, AgentExecutor, BaseMultiActionAgent\n",
|
||||||
|
"from langchain import OpenAI, SerpAPIWrapper"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"id": "d7c4ebdc",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"def random_word(query: str) -> str:\n",
|
||||||
|
" print(\"\\nNow I'm doing this!\")\n",
|
||||||
|
" return \"foo\""
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"id": "becda2a1",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"search = SerpAPIWrapper()\n",
|
||||||
|
"tools = [\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name = \"Search\",\n",
|
||||||
|
" func=search.run,\n",
|
||||||
|
" description=\"useful for when you need to answer questions about current events\"\n",
|
||||||
|
" ),\n",
|
||||||
|
" Tool(\n",
|
||||||
|
" name = \"RandomWord\",\n",
|
||||||
|
" func=random_word,\n",
|
||||||
|
" description=\"call this to get a random word.\"\n",
|
||||||
|
" \n",
|
||||||
|
" )\n",
|
||||||
|
"]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"id": "a33e2f7e",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"from typing import List, Tuple, Any, Union\n",
|
||||||
|
"from langchain.schema import AgentAction, AgentFinish\n",
|
||||||
|
"\n",
|
||||||
|
"class FakeAgent(BaseMultiActionAgent):\n",
|
||||||
|
" \"\"\"Fake Custom Agent.\"\"\"\n",
|
||||||
|
" \n",
|
||||||
|
" @property\n",
|
||||||
|
" def input_keys(self):\n",
|
||||||
|
" return [\"input\"]\n",
|
||||||
|
" \n",
|
||||||
|
" def plan(\n",
|
||||||
|
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
||||||
|
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
||||||
|
" \"\"\"Given input, decided what to do.\n",
|
||||||
|
"\n",
|
||||||
|
" Args:\n",
|
||||||
|
" intermediate_steps: Steps the LLM has taken to date,\n",
|
||||||
|
" along with observations\n",
|
||||||
|
" **kwargs: User inputs.\n",
|
||||||
|
"\n",
|
||||||
|
" Returns:\n",
|
||||||
|
" Action specifying what tool to use.\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" if len(intermediate_steps) == 0:\n",
|
||||||
|
" return [\n",
|
||||||
|
" AgentAction(tool=\"Search\", tool_input=\"foo\", log=\"\"),\n",
|
||||||
|
" AgentAction(tool=\"RandomWord\", tool_input=\"foo\", log=\"\"),\n",
|
||||||
|
" ]\n",
|
||||||
|
" else:\n",
|
||||||
|
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")\n",
|
||||||
|
"\n",
|
||||||
|
" async def aplan(\n",
|
||||||
|
" self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any\n",
|
||||||
|
" ) -> Union[List[AgentAction], AgentFinish]:\n",
|
||||||
|
" \"\"\"Given input, decided what to do.\n",
|
||||||
|
"\n",
|
||||||
|
" Args:\n",
|
||||||
|
" intermediate_steps: Steps the LLM has taken to date,\n",
|
||||||
|
" along with observations\n",
|
||||||
|
" **kwargs: User inputs.\n",
|
||||||
|
"\n",
|
||||||
|
" Returns:\n",
|
||||||
|
" Action specifying what tool to use.\n",
|
||||||
|
" \"\"\"\n",
|
||||||
|
" if len(intermediate_steps) == 0:\n",
|
||||||
|
" return [\n",
|
||||||
|
" AgentAction(tool=\"Search\", tool_input=\"foo\", log=\"\"),\n",
|
||||||
|
" AgentAction(tool=\"RandomWord\", tool_input=\"foo\", log=\"\"),\n",
|
||||||
|
" ]\n",
|
||||||
|
" else:\n",
|
||||||
|
" return AgentFinish(return_values={\"output\": \"bar\"}, log=\"\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 24,
|
||||||
|
"id": "655d72f6",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"agent = FakeAgent()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 25,
|
||||||
|
"id": "490604e9",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 26,
|
||||||
|
"id": "653b1617",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n",
|
||||||
|
"\u001b[32;1m\u001b[1;3m\u001b[0m\u001b[36;1m\u001b[1;3mFoo Fighters is an American rock band formed in Seattle in 1994. Foo Fighters was initially formed as a one-man project by former Nirvana drummer Dave Grohl. Following the success of the 1995 eponymous debut album, Grohl recruited a band consisting of Nate Mendel, William Goldsmith, and Pat Smear.\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
||||||
|
"Now I'm doing this!\n",
|
||||||
|
"\u001b[33;1m\u001b[1;3mfoo\u001b[0m\u001b[32;1m\u001b[1;3m\u001b[0m\n",
|
||||||
|
"\n",
|
||||||
|
"\u001b[1m> Finished chain.\u001b[0m\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"'bar'"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 26,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"agent_executor.run(\"How many people live in canada as of 2023?\")"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"id": "adefb4c2",
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3 (ipykernel)",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.1"
|
||||||
|
},
|
||||||
|
"vscode": {
|
||||||
|
"interpreter": {
|
||||||
|
"hash": "18784188d7ecd866c0586ac068b02361a6896dc3a29b64f5cc957f09c590acef"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
@ -3,6 +3,7 @@ from langchain.agents.agent import (
|
|||||||
Agent,
|
Agent,
|
||||||
AgentExecutor,
|
AgentExecutor,
|
||||||
AgentOutputParser,
|
AgentOutputParser,
|
||||||
|
BaseMultiActionAgent,
|
||||||
BaseSingleActionAgent,
|
BaseSingleActionAgent,
|
||||||
LLMSingleActionAgent,
|
LLMSingleActionAgent,
|
||||||
)
|
)
|
||||||
@ -53,4 +54,5 @@ __all__ = [
|
|||||||
"AgentOutputParser",
|
"AgentOutputParser",
|
||||||
"BaseSingleActionAgent",
|
"BaseSingleActionAgent",
|
||||||
"AgentType",
|
"AgentType",
|
||||||
|
"BaseMultiActionAgent",
|
||||||
]
|
]
|
||||||
|
@ -142,6 +142,118 @@ class BaseSingleActionAgent(BaseModel):
|
|||||||
return {}
|
return {}
|
||||||
|
|
||||||
|
|
||||||
|
class BaseMultiActionAgent(BaseModel):
|
||||||
|
"""Base Agent class."""
|
||||||
|
|
||||||
|
@property
|
||||||
|
def return_values(self) -> List[str]:
|
||||||
|
"""Return values of the agent."""
|
||||||
|
return ["output"]
|
||||||
|
|
||||||
|
def get_allowed_tools(self) -> Optional[List[str]]:
|
||||||
|
return None
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def plan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[List[AgentAction], AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Actions specifying what tool to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
async def aplan(
|
||||||
|
self, intermediate_steps: List[Tuple[AgentAction, str]], **kwargs: Any
|
||||||
|
) -> Union[List[AgentAction], AgentFinish]:
|
||||||
|
"""Given input, decided what to do.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
intermediate_steps: Steps the LLM has taken to date,
|
||||||
|
along with observations
|
||||||
|
**kwargs: User inputs.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Actions specifying what tool to use.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@property
|
||||||
|
@abstractmethod
|
||||||
|
def input_keys(self) -> List[str]:
|
||||||
|
"""Return the input keys.
|
||||||
|
|
||||||
|
:meta private:
|
||||||
|
"""
|
||||||
|
|
||||||
|
def return_stopped_response(
|
||||||
|
self,
|
||||||
|
early_stopping_method: str,
|
||||||
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||||
|
**kwargs: Any,
|
||||||
|
) -> AgentFinish:
|
||||||
|
"""Return response when agent has been stopped due to max iterations."""
|
||||||
|
if early_stopping_method == "force":
|
||||||
|
# `force` just returns a constant string
|
||||||
|
return AgentFinish({"output": "Agent stopped due to max iterations."}, "")
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"Got unsupported early_stopping_method `{early_stopping_method}`"
|
||||||
|
)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def _agent_type(self) -> str:
|
||||||
|
"""Return Identifier of agent type."""
|
||||||
|
raise NotImplementedError
|
||||||
|
|
||||||
|
def dict(self, **kwargs: Any) -> Dict:
|
||||||
|
"""Return dictionary representation of agent."""
|
||||||
|
_dict = super().dict()
|
||||||
|
_dict["_type"] = self._agent_type
|
||||||
|
return _dict
|
||||||
|
|
||||||
|
def save(self, file_path: Union[Path, str]) -> None:
|
||||||
|
"""Save the agent.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
file_path: Path to file to save the agent to.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
.. code-block:: python
|
||||||
|
|
||||||
|
# If working with agent executor
|
||||||
|
agent.agent.save(file_path="path/agent.yaml")
|
||||||
|
"""
|
||||||
|
# Convert file to Path object.
|
||||||
|
if isinstance(file_path, str):
|
||||||
|
save_path = Path(file_path)
|
||||||
|
else:
|
||||||
|
save_path = file_path
|
||||||
|
|
||||||
|
directory_path = save_path.parent
|
||||||
|
directory_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
# Fetch dictionary to save
|
||||||
|
agent_dict = self.dict()
|
||||||
|
|
||||||
|
if save_path.suffix == ".json":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
json.dump(agent_dict, f, indent=4)
|
||||||
|
elif save_path.suffix == ".yaml":
|
||||||
|
with open(file_path, "w") as f:
|
||||||
|
yaml.dump(agent_dict, f, default_flow_style=False)
|
||||||
|
else:
|
||||||
|
raise ValueError(f"{save_path} must be json or yaml")
|
||||||
|
|
||||||
|
def tool_run_logging_kwargs(self) -> Dict:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
|
||||||
class AgentOutputParser(BaseOutputParser):
|
class AgentOutputParser(BaseOutputParser):
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
def parse(self, text: str) -> Union[AgentAction, AgentFinish]:
|
||||||
@ -439,7 +551,7 @@ class Agent(BaseSingleActionAgent):
|
|||||||
class AgentExecutor(Chain, BaseModel):
|
class AgentExecutor(Chain, BaseModel):
|
||||||
"""Consists of an agent using tools."""
|
"""Consists of an agent using tools."""
|
||||||
|
|
||||||
agent: BaseSingleActionAgent
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent]
|
||||||
tools: Sequence[BaseTool]
|
tools: Sequence[BaseTool]
|
||||||
return_intermediate_steps: bool = False
|
return_intermediate_steps: bool = False
|
||||||
max_iterations: Optional[int] = 15
|
max_iterations: Optional[int] = 15
|
||||||
@ -448,7 +560,7 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
@classmethod
|
@classmethod
|
||||||
def from_agent_and_tools(
|
def from_agent_and_tools(
|
||||||
cls,
|
cls,
|
||||||
agent: BaseSingleActionAgent,
|
agent: Union[BaseSingleActionAgent, BaseMultiActionAgent],
|
||||||
tools: Sequence[BaseTool],
|
tools: Sequence[BaseTool],
|
||||||
callback_manager: Optional[BaseCallbackManager] = None,
|
callback_manager: Optional[BaseCallbackManager] = None,
|
||||||
**kwargs: Any,
|
**kwargs: Any,
|
||||||
@ -472,6 +584,20 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
)
|
)
|
||||||
return values
|
return values
|
||||||
|
|
||||||
|
@root_validator()
|
||||||
|
def validate_return_direct_tool(cls, values: Dict) -> Dict:
|
||||||
|
"""Validate that tools are compatible with agent."""
|
||||||
|
agent = values["agent"]
|
||||||
|
tools = values["tools"]
|
||||||
|
if isinstance(agent, BaseMultiActionAgent):
|
||||||
|
for tool in tools:
|
||||||
|
if tool.return_direct:
|
||||||
|
raise ValueError(
|
||||||
|
"Tools that have `return_direct=True` are not allowed "
|
||||||
|
"in multi-action agents"
|
||||||
|
)
|
||||||
|
return values
|
||||||
|
|
||||||
def save(self, file_path: Union[Path, str]) -> None:
|
def save(self, file_path: Union[Path, str]) -> None:
|
||||||
"""Raise error - saving not supported for Agent Executors."""
|
"""Raise error - saving not supported for Agent Executors."""
|
||||||
raise ValueError(
|
raise ValueError(
|
||||||
@ -544,7 +670,7 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
color_mapping: Dict[str, str],
|
color_mapping: Dict[str, str],
|
||||||
inputs: Dict[str, str],
|
inputs: Dict[str, str],
|
||||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||||
) -> Union[AgentFinish, Tuple[AgentAction, str]]:
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
|
||||||
"""Take a single step in the thought-action-observation loop.
|
"""Take a single step in the thought-action-observation loop.
|
||||||
|
|
||||||
Override this to take control of how the agent makes and acts on choices.
|
Override this to take control of how the agent makes and acts on choices.
|
||||||
@ -554,27 +680,41 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
# If the tool chosen is the finishing tool, then we end and return.
|
# If the tool chosen is the finishing tool, then we end and return.
|
||||||
if isinstance(output, AgentFinish):
|
if isinstance(output, AgentFinish):
|
||||||
return output
|
return output
|
||||||
self.callback_manager.on_agent_action(
|
actions: List[AgentAction]
|
||||||
output, verbose=self.verbose, color="green"
|
if isinstance(output, AgentAction):
|
||||||
)
|
actions = [output]
|
||||||
# Otherwise we lookup the tool
|
|
||||||
if output.tool in name_to_tool_map:
|
|
||||||
tool = name_to_tool_map[output.tool]
|
|
||||||
return_direct = tool.return_direct
|
|
||||||
color = color_mapping[output.tool]
|
|
||||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
||||||
if return_direct:
|
|
||||||
tool_run_kwargs["llm_prefix"] = ""
|
|
||||||
# We then call the tool on the tool input to get an observation
|
|
||||||
observation = tool.run(
|
|
||||||
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
actions = output
|
||||||
observation = InvalidTool().run(
|
result = []
|
||||||
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
for agent_action in actions:
|
||||||
|
self.callback_manager.on_agent_action(
|
||||||
|
agent_action, verbose=self.verbose, color="green"
|
||||||
)
|
)
|
||||||
return output, observation
|
# Otherwise we lookup the tool
|
||||||
|
if agent_action.tool in name_to_tool_map:
|
||||||
|
tool = name_to_tool_map[agent_action.tool]
|
||||||
|
return_direct = tool.return_direct
|
||||||
|
color = color_mapping[agent_action.tool]
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
if return_direct:
|
||||||
|
tool_run_kwargs["llm_prefix"] = ""
|
||||||
|
# We then call the tool on the tool input to get an observation
|
||||||
|
observation = tool.run(
|
||||||
|
agent_action.tool_input,
|
||||||
|
verbose=self.verbose,
|
||||||
|
color=color,
|
||||||
|
**tool_run_kwargs,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
observation = InvalidTool().run(
|
||||||
|
agent_action.tool,
|
||||||
|
verbose=self.verbose,
|
||||||
|
color=None,
|
||||||
|
**tool_run_kwargs,
|
||||||
|
)
|
||||||
|
result.append((agent_action, observation))
|
||||||
|
return result
|
||||||
|
|
||||||
async def _atake_next_step(
|
async def _atake_next_step(
|
||||||
self,
|
self,
|
||||||
@ -582,7 +722,7 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
color_mapping: Dict[str, str],
|
color_mapping: Dict[str, str],
|
||||||
inputs: Dict[str, str],
|
inputs: Dict[str, str],
|
||||||
intermediate_steps: List[Tuple[AgentAction, str]],
|
intermediate_steps: List[Tuple[AgentAction, str]],
|
||||||
) -> Union[AgentFinish, Tuple[AgentAction, str]]:
|
) -> Union[AgentFinish, List[Tuple[AgentAction, str]]]:
|
||||||
"""Take a single step in the thought-action-observation loop.
|
"""Take a single step in the thought-action-observation loop.
|
||||||
|
|
||||||
Override this to take control of how the agent makes and acts on choices.
|
Override this to take control of how the agent makes and acts on choices.
|
||||||
@ -592,34 +732,47 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
# If the tool chosen is the finishing tool, then we end and return.
|
# If the tool chosen is the finishing tool, then we end and return.
|
||||||
if isinstance(output, AgentFinish):
|
if isinstance(output, AgentFinish):
|
||||||
return output
|
return output
|
||||||
if self.callback_manager.is_async:
|
actions: List[AgentAction]
|
||||||
await self.callback_manager.on_agent_action(
|
if isinstance(output, AgentAction):
|
||||||
output, verbose=self.verbose, color="green"
|
actions = [output]
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
self.callback_manager.on_agent_action(
|
actions = output
|
||||||
output, verbose=self.verbose, color="green"
|
result = []
|
||||||
)
|
for agent_action in actions:
|
||||||
|
if self.callback_manager.is_async:
|
||||||
|
await self.callback_manager.on_agent_action(
|
||||||
|
agent_action, verbose=self.verbose, color="green"
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.callback_manager.on_agent_action(
|
||||||
|
agent_action, verbose=self.verbose, color="green"
|
||||||
|
)
|
||||||
|
# Otherwise we lookup the tool
|
||||||
|
if agent_action.tool in name_to_tool_map:
|
||||||
|
tool = name_to_tool_map[agent_action.tool]
|
||||||
|
return_direct = tool.return_direct
|
||||||
|
color = color_mapping[agent_action.tool]
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
if return_direct:
|
||||||
|
tool_run_kwargs["llm_prefix"] = ""
|
||||||
|
# We then call the tool on the tool input to get an observation
|
||||||
|
observation = await tool.arun(
|
||||||
|
agent_action.tool_input,
|
||||||
|
verbose=self.verbose,
|
||||||
|
color=color,
|
||||||
|
**tool_run_kwargs,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
||||||
|
observation = await InvalidTool().arun(
|
||||||
|
agent_action.tool,
|
||||||
|
verbose=self.verbose,
|
||||||
|
color=None,
|
||||||
|
**tool_run_kwargs,
|
||||||
|
)
|
||||||
|
result.append((agent_action, observation))
|
||||||
|
|
||||||
# Otherwise we lookup the tool
|
return result
|
||||||
if output.tool in name_to_tool_map:
|
|
||||||
tool = name_to_tool_map[output.tool]
|
|
||||||
return_direct = tool.return_direct
|
|
||||||
color = color_mapping[output.tool]
|
|
||||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
||||||
if return_direct:
|
|
||||||
tool_run_kwargs["llm_prefix"] = ""
|
|
||||||
# We then call the tool on the tool input to get an observation
|
|
||||||
observation = await tool.arun(
|
|
||||||
output.tool_input, verbose=self.verbose, color=color, **tool_run_kwargs
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
tool_run_kwargs = self.agent.tool_run_logging_kwargs()
|
|
||||||
observation = await InvalidTool().arun(
|
|
||||||
output.tool, verbose=self.verbose, color=None, **tool_run_kwargs
|
|
||||||
)
|
|
||||||
return_direct = False
|
|
||||||
return output, observation
|
|
||||||
|
|
||||||
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
def _call(self, inputs: Dict[str, str]) -> Dict[str, Any]:
|
||||||
"""Run text through and get agent response."""
|
"""Run text through and get agent response."""
|
||||||
@ -640,11 +793,13 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
if isinstance(next_step_output, AgentFinish):
|
if isinstance(next_step_output, AgentFinish):
|
||||||
return self._return(next_step_output, intermediate_steps)
|
return self._return(next_step_output, intermediate_steps)
|
||||||
|
|
||||||
intermediate_steps.append(next_step_output)
|
intermediate_steps.extend(next_step_output)
|
||||||
# See if tool should return directly
|
if len(next_step_output) == 1:
|
||||||
tool_return = self._get_tool_return(next_step_output)
|
next_step_action = next_step_output[0]
|
||||||
if tool_return is not None:
|
# See if tool should return directly
|
||||||
return self._return(tool_return, intermediate_steps)
|
tool_return = self._get_tool_return(next_step_action)
|
||||||
|
if tool_return is not None:
|
||||||
|
return self._return(tool_return, intermediate_steps)
|
||||||
iterations += 1
|
iterations += 1
|
||||||
output = self.agent.return_stopped_response(
|
output = self.agent.return_stopped_response(
|
||||||
self.early_stopping_method, intermediate_steps, **inputs
|
self.early_stopping_method, intermediate_steps, **inputs
|
||||||
@ -670,11 +825,13 @@ class AgentExecutor(Chain, BaseModel):
|
|||||||
if isinstance(next_step_output, AgentFinish):
|
if isinstance(next_step_output, AgentFinish):
|
||||||
return await self._areturn(next_step_output, intermediate_steps)
|
return await self._areturn(next_step_output, intermediate_steps)
|
||||||
|
|
||||||
intermediate_steps.append(next_step_output)
|
intermediate_steps.extend(next_step_output)
|
||||||
# See if tool should return directly
|
if len(next_step_output) == 1:
|
||||||
tool_return = self._get_tool_return(next_step_output)
|
next_step_action = next_step_output[0]
|
||||||
if tool_return is not None:
|
# See if tool should return directly
|
||||||
return await self._areturn(tool_return, intermediate_steps)
|
tool_return = self._get_tool_return(next_step_action)
|
||||||
|
if tool_return is not None:
|
||||||
|
return await self._areturn(tool_return, intermediate_steps)
|
||||||
|
|
||||||
iterations += 1
|
iterations += 1
|
||||||
output = self.agent.return_stopped_response(
|
output = self.agent.return_stopped_response(
|
||||||
|
Loading…
Reference in New Issue
Block a user