Adding Self-querying for Vectara (#10332)

- Description: Adding support for self-querying to Vectara integration
  - Issue: per customer request
  - Tag maintainer: @rlancemartin @baskaryan 
  - Twitter handle: @ofermend 

Also updated some documentation, added self-query testing, and a demo
notebook with self-query example.
This commit is contained in:
Ofer Mendelevitch
2023-09-07 10:24:50 -07:00
committed by GitHub
parent 25ec655e4f
commit a9eb7c6cfc
8 changed files with 743 additions and 33 deletions

View File

@@ -16,6 +16,7 @@ from langchain.retrievers.self_query.milvus import MilvusTranslator
from langchain.retrievers.self_query.myscale import MyScaleTranslator
from langchain.retrievers.self_query.pinecone import PineconeTranslator
from langchain.retrievers.self_query.qdrant import QdrantTranslator
from langchain.retrievers.self_query.vectara import VectaraTranslator
from langchain.retrievers.self_query.weaviate import WeaviateTranslator
from langchain.schema import BaseRetriever, Document
from langchain.schema.language_model import BaseLanguageModel
@@ -28,6 +29,7 @@ from langchain.vectorstores import (
MyScale,
Pinecone,
Qdrant,
Vectara,
VectorStore,
Weaviate,
)
@@ -41,6 +43,7 @@ def _get_builtin_translator(vectorstore: VectorStore) -> Visitor:
Chroma: ChromaTranslator,
DashVector: DashvectorTranslator,
Weaviate: WeaviateTranslator,
Vectara: VectaraTranslator,
Qdrant: QdrantTranslator,
MyScale: MyScaleTranslator,
DeepLake: DeepLakeTranslator,

View File

@@ -0,0 +1,69 @@
from typing import Tuple, Union
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
Visitor,
)
def process_value(value: Union[int, float, str]) -> str:
if isinstance(value, str):
return f"'{value}'"
else:
return str(value)
class VectaraTranslator(Visitor):
"""Translate `Vectara` internal query language elements to valid filters."""
allowed_operators = [Operator.AND, Operator.OR]
"""Subset of allowed logical operators."""
allowed_comparators = [
Comparator.EQ,
Comparator.NE,
Comparator.GT,
Comparator.GTE,
Comparator.LT,
Comparator.LTE,
]
"""Subset of allowed logical comparators."""
def _format_func(self, func: Union[Operator, Comparator]) -> str:
map_dict = {
Operator.AND: " and ",
Operator.OR: " or ",
Comparator.EQ: "=",
Comparator.NE: "!=",
Comparator.GT: ">",
Comparator.GTE: ">=",
Comparator.LT: "<",
Comparator.LTE: "<=",
}
self._validate_func(func)
return map_dict[func]
def visit_operation(self, operation: Operation) -> str:
args = [arg.accept(self) for arg in operation.arguments]
operator = self._format_func(operation.operator)
return "( " + operator.join(args) + " )"
def visit_comparison(self, comparison: Comparison) -> str:
comparator = self._format_func(comparison.comparator)
processed_value = process_value(comparison.value)
attribute = comparison.attribute
return (
"( " + "doc." + attribute + " " + comparator + " " + processed_value + " )"
)
def visit_structured_query(
self, structured_query: StructuredQuery
) -> Tuple[str, dict]:
if structured_query.filter is None:
kwargs = {}
else:
kwargs = {"filter": structured_query.filter.accept(self)}
return structured_query.query, kwargs

View File

@@ -396,8 +396,12 @@ class Vectara(VectorStore):
vectara_api_key=api_key,
)
"""
# Note: Vectara generates its own embeddings, so we ignore the provided
# embeddings (required by interface)
# Notes:
# * Vectara generates its own embeddings, so we ignore the provided
# embeddings (required by interface)
# * when metadatas[] are provided they are associated with each "part"
# in Vectara. doc_metadata can be used to provide additional metadata
# for the document itself (applies to all "texts" in this call)
doc_metadata = kwargs.pop("doc_metadata", {})
vectara = cls(**kwargs)
vectara.add_texts(texts, metadatas, doc_metadata=doc_metadata, **kwargs)

View File

@@ -34,8 +34,6 @@ def test_load_returns_list_of_documents(sample_data_frame: pl.DataFrame) -> None
def test_load_converts_dataframe_columns_to_document_metadata(
sample_data_frame: pl.DataFrame,
) -> None:
import polars as pl
loader = PolarsDataFrameLoader(sample_data_frame)
docs = loader.load()

View File

@@ -0,0 +1,71 @@
from typing import Dict, Tuple
from langchain.chains.query_constructor.ir import (
Comparator,
Comparison,
Operation,
Operator,
StructuredQuery,
)
from langchain.retrievers.self_query.vectara import VectaraTranslator
DEFAULT_TRANSLATOR = VectaraTranslator()
def test_visit_comparison() -> None:
comp = Comparison(comparator=Comparator.LT, attribute="foo", value="1")
expected = "( doc.foo < '1' )"
actual = DEFAULT_TRANSLATOR.visit_comparison(comp)
assert expected == actual
def test_visit_operation() -> None:
op = Operation(
operator=Operator.AND,
arguments=[
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
Comparison(comparator=Comparator.LT, attribute="abc", value=1),
],
)
expected = "( ( doc.foo < 2 ) and ( doc.bar = 'baz' ) and ( doc.abc < 1 ) )"
actual = DEFAULT_TRANSLATOR.visit_operation(op)
assert expected == actual
def test_visit_structured_query() -> None:
query = "What is the capital of France?"
structured_query = StructuredQuery(
query=query,
filter=None,
limit=None,
)
expected: Tuple[str, Dict] = (query, {})
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
assert expected == actual
comp = Comparison(comparator=Comparator.LT, attribute="foo", value=1)
expected = (query, {"filter": "( doc.foo < 1 )"})
structured_query = StructuredQuery(
query=query,
filter=comp,
limit=None,
)
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
assert expected == actual
op = Operation(
operator=Operator.AND,
arguments=[
Comparison(comparator=Comparator.LT, attribute="foo", value=2),
Comparison(comparator=Comparator.EQ, attribute="bar", value="baz"),
Comparison(comparator=Comparator.LT, attribute="abc", value=1),
],
)
structured_query = StructuredQuery(query=query, filter=op, limit=None)
expected = (
query,
{"filter": "( ( doc.foo < 2 ) and ( doc.bar = 'baz' ) and ( doc.abc < 1 ) )"},
)
actual = DEFAULT_TRANSLATOR.visit_structured_query(structured_query)
assert expected == actual