mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-31 18:38:48 +00:00
Harrison/official pre release (#8106)
This commit is contained in:
@@ -1,19 +0,0 @@
|
||||
from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT
|
||||
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
from langchain.experimental.generative_agents.generative_agent import GenerativeAgent
|
||||
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
from langchain.experimental.plan_and_execute import (
|
||||
PlanAndExecute,
|
||||
load_agent_executor,
|
||||
load_chat_planner,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"BabyAGI",
|
||||
"AutoGPT",
|
||||
"GenerativeAgent",
|
||||
"GenerativeAgentMemory",
|
||||
"PlanAndExecute",
|
||||
"load_agent_executor",
|
||||
"load_chat_planner",
|
||||
]
|
@@ -1,4 +0,0 @@
|
||||
from langchain.experimental.autonomous_agents.autogpt.agent import AutoGPT
|
||||
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
|
||||
__all__ = ["BabyAGI", "AutoGPT"]
|
@@ -1,6 +0,0 @@
|
||||
"""Experimental LLM wrappers."""
|
||||
|
||||
from langchain.experimental.llms.jsonformer_decoder import JsonFormer
|
||||
from langchain.experimental.llms.rellm_decoder import RELLM
|
||||
|
||||
__all__ = ["RELLM", "JsonFormer"]
|
@@ -1,9 +0,0 @@
|
||||
from langchain.experimental.plan_and_execute.agent_executor import PlanAndExecute
|
||||
from langchain.experimental.plan_and_execute.executors.agent_executor import (
|
||||
load_agent_executor,
|
||||
)
|
||||
from langchain.experimental.plan_and_execute.planners.chat_planner import (
|
||||
load_chat_planner,
|
||||
)
|
||||
|
||||
__all__ = ["PlanAndExecute", "load_agent_executor", "load_chat_planner"]
|
@@ -1,3 +0,0 @@
|
||||
from langchain.experimental.prompts.load import load_prompt
|
||||
|
||||
__all__ = ["load_prompt"]
|
19
libs/experimental/langchain_experimental/__init__.py
Normal file
19
libs/experimental/langchain_experimental/__init__.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from langchain_experimental.autonomous_agents.autogpt.agent import AutoGPT
|
||||
from langchain_experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
from langchain_experimental.generative_agents.generative_agent import GenerativeAgent
|
||||
from langchain_experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
from langchain_experimental.plan_and_execute import (
|
||||
PlanAndExecute,
|
||||
load_agent_executor,
|
||||
load_chat_planner,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"BabyAGI",
|
||||
"AutoGPT",
|
||||
"GenerativeAgent",
|
||||
"GenerativeAgentMemory",
|
||||
"PlanAndExecute",
|
||||
"load_agent_executor",
|
||||
"load_chat_planner",
|
||||
]
|
@@ -0,0 +1,4 @@
|
||||
from langchain_experimental.autonomous_agents.autogpt.agent import AutoGPT
|
||||
from langchain_experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
|
||||
__all__ = ["BabyAGI", "AutoGPT"]
|
@@ -2,18 +2,8 @@ from __future__ import annotations
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chat_models.base import BaseChatModel
|
||||
from langchain.experimental.autonomous_agents.autogpt.output_parser import (
|
||||
AutoGPTOutputParser,
|
||||
BaseAutoGPTOutputParser,
|
||||
)
|
||||
from langchain.experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt
|
||||
from langchain.experimental.autonomous_agents.autogpt.prompt_generator import (
|
||||
FINISH_NAME,
|
||||
)
|
||||
from langchain.memory import ChatMessageHistory
|
||||
from langchain.schema import (
|
||||
BaseChatMessageHistory,
|
||||
@@ -23,6 +13,16 @@ from langchain.schema.messages import AIMessage, HumanMessage, SystemMessage
|
||||
from langchain.tools.base import BaseTool
|
||||
from langchain.tools.human.tool import HumanInputRun
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
from pydantic import ValidationError
|
||||
|
||||
from langchain_experimental.autonomous_agents.autogpt.output_parser import (
|
||||
AutoGPTOutputParser,
|
||||
BaseAutoGPTOutputParser,
|
||||
)
|
||||
from langchain_experimental.autonomous_agents.autogpt.prompt import AutoGPTPrompt
|
||||
from langchain_experimental.autonomous_agents.autogpt.prompt_generator import (
|
||||
FINISH_NAME,
|
||||
)
|
||||
|
||||
|
||||
class AutoGPT:
|
@@ -1,9 +1,8 @@
|
||||
from typing import Any, Dict, List
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from langchain.memory.chat_memory import BaseChatMemory, get_prompt_input_key
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
from pydantic import Field
|
||||
|
||||
|
||||
class AutoGPTMemory(BaseChatMemory):
|
@@ -1,15 +1,15 @@
|
||||
import time
|
||||
from typing import Any, Callable, List
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.experimental.autonomous_agents.autogpt.prompt_generator import get_prompt
|
||||
from langchain.prompts.chat import (
|
||||
BaseChatPromptTemplate,
|
||||
)
|
||||
from langchain.schema.messages import BaseMessage, HumanMessage, SystemMessage
|
||||
from langchain.tools.base import BaseTool
|
||||
from langchain.vectorstores.base import VectorStoreRetriever
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_experimental.autonomous_agents.autogpt.prompt_generator import get_prompt
|
||||
|
||||
|
||||
class AutoGPTPrompt(BaseChatPromptTemplate, BaseModel):
|
@@ -1,11 +1,11 @@
|
||||
from langchain.experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_creation import (
|
||||
from langchain_experimental.autonomous_agents.baby_agi.baby_agi import BabyAGI
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_creation import (
|
||||
TaskCreationChain,
|
||||
)
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_execution import (
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_execution import (
|
||||
TaskExecutionChain,
|
||||
)
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import (
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_prioritization import (
|
||||
TaskPrioritizationChain,
|
||||
)
|
||||
|
@@ -2,21 +2,21 @@
|
||||
from collections import deque
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_creation import (
|
||||
TaskCreationChain,
|
||||
)
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_execution import (
|
||||
TaskExecutionChain,
|
||||
)
|
||||
from langchain.experimental.autonomous_agents.baby_agi.task_prioritization import (
|
||||
TaskPrioritizationChain,
|
||||
)
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_creation import (
|
||||
TaskCreationChain,
|
||||
)
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_execution import (
|
||||
TaskExecutionChain,
|
||||
)
|
||||
from langchain_experimental.autonomous_agents.baby_agi.task_prioritization import (
|
||||
TaskPrioritizationChain,
|
||||
)
|
||||
|
||||
|
||||
class BabyAGI(Chain, BaseModel):
|
@@ -7,33 +7,33 @@ import json
|
||||
from typing import Any, ClassVar, Dict, List, Optional, Type
|
||||
|
||||
import pydantic
|
||||
|
||||
from langchain.base_language import BaseLanguageModel
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.experimental.cpal.constants import Constant
|
||||
from langchain.experimental.cpal.models import (
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
|
||||
from langchain_experimental.cpal.constants import Constant
|
||||
from langchain_experimental.cpal.models import (
|
||||
CausalModel,
|
||||
InterventionModel,
|
||||
NarrativeModel,
|
||||
QueryModel,
|
||||
StoryModel,
|
||||
)
|
||||
from langchain.experimental.cpal.templates.univariate.causal import (
|
||||
from langchain_experimental.cpal.templates.univariate.causal import (
|
||||
template as causal_template,
|
||||
)
|
||||
from langchain.experimental.cpal.templates.univariate.intervention import (
|
||||
from langchain_experimental.cpal.templates.univariate.intervention import (
|
||||
template as intervention_template,
|
||||
)
|
||||
from langchain.experimental.cpal.templates.univariate.narrative import (
|
||||
from langchain_experimental.cpal.templates.univariate.narrative import (
|
||||
template as narrative_template,
|
||||
)
|
||||
from langchain.experimental.cpal.templates.univariate.query import (
|
||||
from langchain_experimental.cpal.templates.univariate.query import (
|
||||
template as query_template,
|
||||
)
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
|
||||
|
||||
class _BaseStoryElementChain(Chain):
|
@@ -5,10 +5,10 @@ from typing import Any, Optional, Union
|
||||
|
||||
import duckdb
|
||||
import pandas as pd
|
||||
from langchain.graphs.networkx_graph import NetworkxEntityGraph
|
||||
from pydantic import BaseModel, Field, PrivateAttr, root_validator, validator
|
||||
|
||||
from langchain.experimental.cpal.constants import Constant
|
||||
from langchain.graphs.networkx_graph import NetworkxEntityGraph
|
||||
from langchain_experimental.cpal.constants import Constant
|
||||
|
||||
|
||||
class NarrativeModel(BaseModel):
|
@@ -1,5 +1,5 @@
|
||||
"""Generative Agents primitives."""
|
||||
from langchain.experimental.generative_agents.generative_agent import GenerativeAgent
|
||||
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
from langchain_experimental.generative_agents.generative_agent import GenerativeAgent
|
||||
from langchain_experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
|
||||
__all__ = ["GenerativeAgent", "GenerativeAgentMemory"]
|
@@ -2,12 +2,12 @@ import re
|
||||
from datetime import datetime
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
from langchain.prompts import PromptTemplate
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain_experimental.generative_agents.memory import GenerativeAgentMemory
|
||||
|
||||
|
||||
class GenerativeAgent(BaseModel):
|
@@ -0,0 +1,6 @@
|
||||
"""Experimental LLM wrappers."""
|
||||
|
||||
from langchain_experimental.llms.jsonformer_decoder import JsonFormer
|
||||
from langchain_experimental.llms.rellm_decoder import RELLM
|
||||
|
||||
__all__ = ["RELLM", "JsonFormer"]
|
@@ -4,10 +4,9 @@ from __future__ import annotations
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
||||
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import jsonformer
|
@@ -3,11 +3,10 @@ from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
||||
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import rellm
|
@@ -5,6 +5,6 @@ As in https://arxiv.org/pdf/2211.10435.pdf.
|
||||
This is vulnerable to arbitrary code execution:
|
||||
https://github.com/hwchase17/langchain/issues/5872
|
||||
"""
|
||||
from langchain.experimental.pal_chain.base import PALChain
|
||||
from langchain_experimental.pal_chain.base import PALChain
|
||||
|
||||
__all__ = ["PALChain"]
|
@@ -11,16 +11,16 @@ import ast
|
||||
import warnings
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.pal.colored_object_prompt import COLORED_OBJECT_PROMPT
|
||||
from langchain.chains.pal.math_prompt import MATH_PROMPT
|
||||
from langchain.schema import BasePromptTemplate
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.utilities import PythonREPL
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT
|
||||
from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT
|
||||
|
||||
COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"]
|
||||
|
@@ -0,0 +1,9 @@
|
||||
from langchain_experimental.plan_and_execute.agent_executor import PlanAndExecute
|
||||
from langchain_experimental.plan_and_execute.executors.agent_executor import (
|
||||
load_agent_executor,
|
||||
)
|
||||
from langchain_experimental.plan_and_execute.planners.chat_planner import (
|
||||
load_chat_planner,
|
||||
)
|
||||
|
||||
__all__ = ["PlanAndExecute", "load_agent_executor", "load_chat_planner"]
|
@@ -1,12 +1,12 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.experimental.plan_and_execute.executors.base import BaseExecutor
|
||||
from langchain.experimental.plan_and_execute.planners.base import BasePlanner
|
||||
from langchain.experimental.plan_and_execute.schema import (
|
||||
from pydantic import Field
|
||||
|
||||
from langchain_experimental.plan_and_execute.executors.base import BaseExecutor
|
||||
from langchain_experimental.plan_and_execute.planners.base import BasePlanner
|
||||
from langchain_experimental.plan_and_execute.schema import (
|
||||
BaseStepContainer,
|
||||
ListStepContainer,
|
||||
)
|
@@ -2,10 +2,11 @@ from typing import List
|
||||
|
||||
from langchain.agents.agent import AgentExecutor
|
||||
from langchain.agents.structured_chat.base import StructuredChatAgent
|
||||
from langchain.experimental.plan_and_execute.executors.base import ChainExecutor
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools import BaseTool
|
||||
|
||||
from langchain_experimental.plan_and_execute.executors.base import ChainExecutor
|
||||
|
||||
HUMAN_MESSAGE_TEMPLATE = """Previous steps: {previous_steps}
|
||||
|
||||
Current objective: {current_step}
|
@@ -1,11 +1,11 @@
|
||||
from abc import abstractmethod
|
||||
from typing import Any
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.experimental.plan_and_execute.schema import StepResponse
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_experimental.plan_and_execute.schema import StepResponse
|
||||
|
||||
|
||||
class BaseExecutor(BaseModel):
|
@@ -1,11 +1,11 @@
|
||||
from abc import abstractmethod
|
||||
from typing import Any, List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain.callbacks.manager import Callbacks
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.experimental.plan_and_execute.schema import Plan, PlanOutputParser
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_experimental.plan_and_execute.schema import Plan, PlanOutputParser
|
||||
|
||||
|
||||
class BasePlanner(BaseModel):
|
@@ -1,15 +1,16 @@
|
||||
import re
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.experimental.plan_and_execute.planners.base import LLMPlanner
|
||||
from langchain.experimental.plan_and_execute.schema import (
|
||||
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.schema.messages import SystemMessage
|
||||
|
||||
from langchain_experimental.plan_and_execute.planners.base import LLMPlanner
|
||||
from langchain_experimental.plan_and_execute.schema import (
|
||||
Plan,
|
||||
PlanOutputParser,
|
||||
Step,
|
||||
)
|
||||
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.schema.messages import SystemMessage
|
||||
|
||||
SYSTEM_PROMPT = (
|
||||
"Let's first understand the problem and devise a plan to solve the problem."
|
@@ -1,9 +1,8 @@
|
||||
from abc import abstractmethod
|
||||
from typing import List, Tuple
|
||||
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
from langchain.schema import BaseOutputParser
|
||||
from pydantic import BaseModel, Field
|
||||
|
||||
|
||||
class Step(BaseModel):
|
@@ -0,0 +1,3 @@
|
||||
from langchain_experimental.prompts.load import load_prompt
|
||||
|
||||
__all__ = ["load_prompt"]
|
@@ -5,7 +5,6 @@ from pathlib import Path
|
||||
from typing import Union
|
||||
|
||||
import yaml
|
||||
|
||||
from langchain.prompts.loading import load_prompt_from_config, try_load_from_hub
|
||||
from langchain.schema.prompts import BasePromptTemplate
|
||||
|
@@ -1,4 +1,4 @@
|
||||
"""Chain for interacting with SQL Database."""
|
||||
from langchain.experimental.sql.base import SQLDatabaseChain
|
||||
from langchain_experimental.sql.base import SQLDatabaseChain
|
||||
|
||||
__all__ = ["SQLDatabaseChain"]
|
@@ -4,17 +4,17 @@ from __future__ import annotations
|
||||
import warnings
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForChainRun
|
||||
from langchain.chains.base import Chain
|
||||
from langchain.chains.llm import LLMChain
|
||||
from langchain.chains.sql_database.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
|
||||
from langchain.prompts.prompt import PromptTemplate
|
||||
from langchain.schema import BasePromptTemplate
|
||||
from langchain.schema.language_model import BaseLanguageModel
|
||||
from langchain.tools.sql_database.prompt import QUERY_CHECKER
|
||||
from langchain.utilities.sql_database import SQLDatabase
|
||||
from pydantic import Extra, Field, root_validator
|
||||
|
||||
from langchain_experimental.sql.prompt import DECIDER_PROMPT, PROMPT, SQL_PROMPTS
|
||||
|
||||
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
|
||||
|
||||
@@ -25,7 +25,7 @@ class SQLDatabaseChain(Chain):
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.experimental.sql import SQLDatabaseChain
|
||||
from langchain_experimental.sql import SQLDatabaseChain
|
||||
from langchain import OpenAI, SQLDatabase
|
||||
db = SQLDatabase(...)
|
||||
db_chain = SQLDatabaseChain.from_llm(OpenAI(), db)
|
@@ -1,14 +1,11 @@
|
||||
[tool.poetry]
|
||||
name = "langchain-experimental"
|
||||
version = "0.0.1rc0"
|
||||
version = "0.0.1rc4"
|
||||
description = "Building applications with LLMs through composability"
|
||||
authors = []
|
||||
license = "MIT"
|
||||
readme = "README.md"
|
||||
repository = "https://www.github.com/hwchase17/langchain"
|
||||
packages = [
|
||||
{include = "langchain"}
|
||||
]
|
||||
|
||||
|
||||
[tool.poetry.dependencies]
|
||||
|
Reference in New Issue
Block a user