mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-09 06:53:59 +00:00
Harrison/official pre release (#8106)
This commit is contained in:
@@ -0,0 +1,6 @@
|
||||
"""Experimental LLM wrappers."""
|
||||
|
||||
from langchain_experimental.llms.jsonformer_decoder import JsonFormer
|
||||
from langchain_experimental.llms.rellm_decoder import RELLM
|
||||
|
||||
__all__ = ["RELLM", "JsonFormer"]
|
@@ -0,0 +1,60 @@
|
||||
"""Experimental implementation of jsonformer wrapped LLM."""
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import jsonformer
|
||||
|
||||
|
||||
def import_jsonformer() -> jsonformer:
|
||||
"""Lazily import jsonformer."""
|
||||
try:
|
||||
import jsonformer
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import jsonformer python package. "
|
||||
"Please install it with `pip install jsonformer`."
|
||||
)
|
||||
return jsonformer
|
||||
|
||||
|
||||
class JsonFormer(HuggingFacePipeline):
|
||||
json_schema: dict = Field(..., description="The JSON Schema to complete.")
|
||||
max_new_tokens: int = Field(
|
||||
default=200, description="Maximum number of new tokens to generate."
|
||||
)
|
||||
debug: bool = Field(default=False, description="Debug mode.")
|
||||
|
||||
@root_validator
|
||||
def check_jsonformer_installation(cls, values: dict) -> dict:
|
||||
import_jsonformer()
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
jsonformer = import_jsonformer()
|
||||
from transformers import Text2TextGenerationPipeline
|
||||
|
||||
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
|
||||
|
||||
model = jsonformer.Jsonformer(
|
||||
model=pipeline.model,
|
||||
tokenizer=pipeline.tokenizer,
|
||||
json_schema=self.json_schema,
|
||||
prompt=prompt,
|
||||
max_number_tokens=self.max_new_tokens,
|
||||
debug=self.debug,
|
||||
)
|
||||
text = model()
|
||||
return json.dumps(text)
|
@@ -0,0 +1,67 @@
|
||||
"""Experimental implementation of RELLM wrapped LLM."""
|
||||
from __future__ import annotations
|
||||
|
||||
from typing import TYPE_CHECKING, Any, List, Optional, cast
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForLLMRun
|
||||
from langchain.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
from langchain.llms.utils import enforce_stop_tokens
|
||||
from pydantic import Field, root_validator
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import rellm
|
||||
from regex import Pattern as RegexPattern
|
||||
else:
|
||||
try:
|
||||
from regex import Pattern as RegexPattern
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
def import_rellm() -> rellm:
|
||||
"""Lazily import rellm."""
|
||||
try:
|
||||
import rellm
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import rellm python package. "
|
||||
"Please install it with `pip install rellm`."
|
||||
)
|
||||
return rellm
|
||||
|
||||
|
||||
class RELLM(HuggingFacePipeline):
|
||||
regex: RegexPattern = Field(..., description="The structured format to complete.")
|
||||
max_new_tokens: int = Field(
|
||||
default=200, description="Maximum number of new tokens to generate."
|
||||
)
|
||||
|
||||
@root_validator
|
||||
def check_rellm_installation(cls, values: dict) -> dict:
|
||||
import_rellm()
|
||||
return values
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
rellm = import_rellm()
|
||||
from transformers import Text2TextGenerationPipeline
|
||||
|
||||
pipeline = cast(Text2TextGenerationPipeline, self.pipeline)
|
||||
|
||||
text = rellm.complete_re(
|
||||
prompt,
|
||||
self.regex,
|
||||
tokenizer=pipeline.tokenizer,
|
||||
model=pipeline.model,
|
||||
max_new_tokens=self.max_new_tokens,
|
||||
)
|
||||
if stop is not None:
|
||||
# This is a bit hacky, but I can't figure out a better way to enforce
|
||||
# stop tokens when making calls to huggingface_hub.
|
||||
text = enforce_stop_tokens(text, stop)
|
||||
return text
|
Reference in New Issue
Block a user