Harrison/official pre release (#8106)

This commit is contained in:
Harrison Chase
2023-07-21 18:44:32 -07:00
committed by GitHub
parent 95bcf68802
commit aa0e69bc98
65 changed files with 210 additions and 602 deletions

View File

@@ -0,0 +1,10 @@
"""Implements Program-Aided Language Models.
As in https://arxiv.org/pdf/2211.10435.pdf.
This is vulnerable to arbitrary code execution:
https://github.com/hwchase17/langchain/issues/5872
"""
from langchain_experimental.pal_chain.base import PALChain
__all__ = ["PALChain"]

View File

@@ -0,0 +1,314 @@
"""Implements Program-Aided Language Models.
This module implements the Program-Aided Language Models (PAL) for generating code
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
(https://arxiv.org/pdf/2211.10435.pdf).
"""
from __future__ import annotations
import ast
import warnings
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from langchain.chains.llm import LLMChain
from langchain.schema import BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.utilities import PythonREPL
from pydantic import Extra, Field, root_validator
from langchain_experimental.pal_chain.colored_object_prompt import COLORED_OBJECT_PROMPT
from langchain_experimental.pal_chain.math_prompt import MATH_PROMPT
COMMAND_EXECUTION_FUNCTIONS = ["system", "exec", "execfile", "eval"]
class PALValidation:
SOLUTION_EXPRESSION_TYPE_FUNCTION = ast.FunctionDef
SOLUTION_EXPRESSION_TYPE_VARIABLE = ast.Name
def __init__(
self,
solution_expression_name: Optional[str] = None,
solution_expression_type: Optional[type] = None,
allow_imports: bool = False,
allow_command_exec: bool = False,
):
"""Initialize a PALValidation instance.
Args:
solution_expression_name (str): Name of the expected solution expression.
If passed, solution_expression_type must be passed as well.
solution_expression_type (str): AST type of the expected solution
expression. If passed, solution_expression_name must be passed as well.
Must be one of PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE.
allow_imports (bool): Allow import statements.
allow_command_exec (bool): Allow using known command execution functions.
"""
self.solution_expression_name = solution_expression_name
self.solution_expression_type = solution_expression_type
if solution_expression_name is not None:
if not isinstance(self.solution_expression_name, str):
raise ValueError(
f"Expected solution_expression_name to be str, "
f"instead found {type(self.solution_expression_name)}"
)
if solution_expression_type is not None:
if (
self.solution_expression_type
is not self.SOLUTION_EXPRESSION_TYPE_FUNCTION
and self.solution_expression_type
is not self.SOLUTION_EXPRESSION_TYPE_VARIABLE
):
raise ValueError(
f"Expected solution_expression_type to be one of "
f"({self.SOLUTION_EXPRESSION_TYPE_FUNCTION},"
f"{self.SOLUTION_EXPRESSION_TYPE_VARIABLE}),"
f"instead found {self.solution_expression_type}"
)
if solution_expression_name is not None and solution_expression_type is None:
raise TypeError(
"solution_expression_name "
"requires solution_expression_type to be passed as well"
)
if solution_expression_name is None and solution_expression_type is not None:
raise TypeError(
"solution_expression_type "
"requires solution_expression_name to be passed as well"
)
self.allow_imports = allow_imports
self.allow_command_exec = allow_command_exec
class PALChain(Chain):
"""Implements Program-Aided Language Models (PAL).
This class implements the Program-Aided Language Models (PAL) for generating code
solutions. PAL is a technique described in the paper "Program-Aided Language Models"
(https://arxiv.org/pdf/2211.10435.pdf).
"""
llm_chain: LLMChain
llm: Optional[BaseLanguageModel] = None
"""[Deprecated]"""
prompt: BasePromptTemplate = MATH_PROMPT
"""[Deprecated]"""
stop: str = "\n\n"
"""Stop token to use when generating code."""
get_answer_expr: str = "print(solution())"
"""Expression to use to get the answer from the generated code."""
python_globals: Optional[Dict[str, Any]] = None
"""Python globals and locals to use when executing the generated code."""
python_locals: Optional[Dict[str, Any]] = None
"""Python globals and locals to use when executing the generated code."""
output_key: str = "result" #: :meta private:
return_intermediate_steps: bool = False
"""Whether to return intermediate steps in the generated code."""
code_validations: PALValidation = Field(default_factory=PALValidation)
"""Validations to perform on the generated code."""
timeout: Optional[int] = 10
"""Timeout in seconds for the generated code to execute."""
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
arbitrary_types_allowed = True
@root_validator(pre=True)
def raise_deprecation(cls, values: Dict) -> Dict:
if "llm" in values:
warnings.warn(
"Directly instantiating a PALChain with an llm is deprecated. "
"Please instantiate with llm_chain argument or using one of "
"the class method constructors from_math_prompt, "
"from_colored_object_prompt."
)
if "llm_chain" not in values and values["llm"] is not None:
values["llm_chain"] = LLMChain(llm=values["llm"], prompt=MATH_PROMPT)
return values
@property
def input_keys(self) -> List[str]:
"""Return the singular input key.
:meta private:
"""
return self.prompt.input_variables
@property
def output_keys(self) -> List[str]:
"""Return the singular output key.
:meta private:
"""
if not self.return_intermediate_steps:
return [self.output_key]
else:
return [self.output_key, "intermediate_steps"]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, str]:
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
code = self.llm_chain.predict(
stop=[self.stop], callbacks=_run_manager.get_child(), **inputs
)
_run_manager.on_text(code, color="green", end="\n", verbose=self.verbose)
PALChain.validate_code(code, self.code_validations)
repl = PythonREPL(_globals=self.python_globals, _locals=self.python_locals)
res = repl.run(code + f"\n{self.get_answer_expr}", timeout=self.timeout)
output = {self.output_key: res.strip()}
if self.return_intermediate_steps:
output["intermediate_steps"] = code
return output
@classmethod
def validate_code(cls, code: str, code_validations: PALValidation) -> None:
try:
code_tree = ast.parse(code)
except (SyntaxError, UnicodeDecodeError):
raise ValueError(f"Generated code is not valid python code: {code}")
except TypeError:
raise ValueError(
f"Generated code is expected to be a string, "
f"instead found {type(code)}"
)
except OverflowError:
raise ValueError(
f"Generated code too long / complex to be parsed by ast: {code}"
)
found_solution_expr = False
if code_validations.solution_expression_name is None:
# Skip validation if no solution_expression_name was given
found_solution_expr = True
has_imports = False
top_level_nodes = list(ast.iter_child_nodes(code_tree))
for node in top_level_nodes:
if (
code_validations.solution_expression_name is not None
and code_validations.solution_expression_type is not None
):
# Check root nodes (like func def)
if (
isinstance(node, code_validations.solution_expression_type)
and hasattr(node, "name")
and node.name == code_validations.solution_expression_name
):
found_solution_expr = True
# Check assigned nodes (like answer variable)
if isinstance(node, ast.Assign):
for target_node in node.targets:
if (
isinstance(
target_node, code_validations.solution_expression_type
)
and hasattr(target_node, "id")
and target_node.id
== code_validations.solution_expression_name
):
found_solution_expr = True
if isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom):
has_imports = True
if not found_solution_expr:
raise ValueError(
f"Generated code is missing the solution expression: "
f"{code_validations.solution_expression_name} of type: "
f"{code_validations.solution_expression_type}"
)
if not code_validations.allow_imports and has_imports:
raise ValueError(f"Generated code has disallowed imports: {code}")
if (
not code_validations.allow_command_exec
or not code_validations.allow_imports
):
for node in ast.walk(code_tree):
if (
(not code_validations.allow_command_exec)
and isinstance(node, ast.Call)
and (
(
hasattr(node.func, "id")
and node.func.id in COMMAND_EXECUTION_FUNCTIONS
)
or (
isinstance(node.func, ast.Attribute)
and node.func.attr in COMMAND_EXECUTION_FUNCTIONS
)
)
):
raise ValueError(
f"Found illegal command execution function "
f"{node.func.id} in code {code}"
)
if (not code_validations.allow_imports) and (
isinstance(node, ast.Import) or isinstance(node, ast.ImportFrom)
):
raise ValueError(f"Generated code has disallowed imports: {code}")
@classmethod
def from_math_prompt(cls, llm: BaseLanguageModel, **kwargs: Any) -> PALChain:
"""Load PAL from math prompt.
Args:
llm (BaseLanguageModel): The language model to use for generating code.
Returns:
PALChain: An instance of PALChain.
"""
llm_chain = LLMChain(llm=llm, prompt=MATH_PROMPT)
code_validations = PALValidation(
solution_expression_name="solution",
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_FUNCTION,
)
return cls(
llm_chain=llm_chain,
stop="\n\n",
get_answer_expr="print(solution())",
code_validations=code_validations,
**kwargs,
)
@classmethod
def from_colored_object_prompt(
cls, llm: BaseLanguageModel, **kwargs: Any
) -> PALChain:
"""Load PAL from colored object prompt.
Args:
llm (BaseLanguageModel): The language model to use for generating code.
Returns:
PALChain: An instance of PALChain.
"""
llm_chain = LLMChain(llm=llm, prompt=COLORED_OBJECT_PROMPT)
code_validations = PALValidation(
solution_expression_name="answer",
solution_expression_type=PALValidation.SOLUTION_EXPRESSION_TYPE_VARIABLE,
)
return cls(
llm_chain=llm_chain,
stop="\n\n\n",
get_answer_expr="print(answer)",
code_validations=code_validations,
**kwargs,
)
@property
def _chain_type(self) -> str:
return "pal_chain"

View File

@@ -0,0 +1,77 @@
# flake8: noqa
from langchain.prompts.prompt import PromptTemplate
template = (
"""
# Generate Python3 Code to solve problems
# Q: On the nightstand, there is a red pencil, a purple mug, a burgundy keychain, a fuchsia teddy bear, a black plate, and a blue stress ball. What color is the stress ball?
# Put objects into a dictionary for quick look up
objects = dict()
objects['pencil'] = 'red'
objects['mug'] = 'purple'
objects['keychain'] = 'burgundy'
objects['teddy bear'] = 'fuchsia'
objects['plate'] = 'black'
objects['stress ball'] = 'blue'
# Look up the color of stress ball
stress_ball_color = objects['stress ball']
answer = stress_ball_color
# Q: On the table, you see a bunch of objects arranged in a row: a purple paperclip, a pink stress ball, a brown keychain, a green scrunchiephone charger, a mauve fidget spinner, and a burgundy pen. What is the color of the object directly to the right of the stress ball?
# Put objects into a list to record ordering
objects = []
objects += [('paperclip', 'purple')] * 1
objects += [('stress ball', 'pink')] * 1
objects += [('keychain', 'brown')] * 1
objects += [('scrunchiephone charger', 'green')] * 1
objects += [('fidget spinner', 'mauve')] * 1
objects += [('pen', 'burgundy')] * 1
# Find the index of the stress ball
stress_ball_idx = None
for i, object in enumerate(objects):
if object[0] == 'stress ball':
stress_ball_idx = i
break
# Find the directly right object
direct_right = objects[i+1]
# Check the directly right object's color
direct_right_color = direct_right[1]
answer = direct_right_color
# Q: On the nightstand, you see the following items arranged in a row: a teal plate, a burgundy keychain, a yellow scrunchiephone charger, an orange mug, a pink notebook, and a grey cup. How many non-orange items do you see to the left of the teal item?
# Put objects into a list to record ordering
objects = []
objects += [('plate', 'teal')] * 1
objects += [('keychain', 'burgundy')] * 1
objects += [('scrunchiephone charger', 'yellow')] * 1
objects += [('mug', 'orange')] * 1
objects += [('notebook', 'pink')] * 1
objects += [('cup', 'grey')] * 1
# Find the index of the teal item
teal_idx = None
for i, object in enumerate(objects):
if object[1] == 'teal':
teal_idx = i
break
# Find non-orange items to the left of the teal item
non_orange = [object for object in objects[:i] if object[1] != 'orange']
# Count number of non-orange objects
num_non_orange = len(non_orange)
answer = num_non_orange
# Q: {question}
""".strip()
+ "\n"
)
COLORED_OBJECT_PROMPT = PromptTemplate(input_variables=["question"], template=template)

View File

@@ -0,0 +1,157 @@
# flake8: noqa
from langchain.prompts.prompt import PromptTemplate
template = (
'''
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
# solution in Python:
def solution():
"""Olivia has $23. She bought five bagels for $3 each. How much money does she have left?"""
money_initial = 23
bagels = 5
bagel_cost = 3
money_spent = bagels * bagel_cost
money_left = money_initial - money_spent
result = money_left
return result
Q: Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?
# solution in Python:
def solution():
"""Michael had 58 golf balls. On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday?"""
golf_balls_initial = 58
golf_balls_lost_tuesday = 23
golf_balls_lost_wednesday = 2
golf_balls_left = golf_balls_initial - golf_balls_lost_tuesday - golf_balls_lost_wednesday
result = golf_balls_left
return result
Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?
# solution in Python:
def solution():
"""There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room?"""
computers_initial = 9
computers_per_day = 5
num_days = 4 # 4 days between monday and thursday
computers_added = computers_per_day * num_days
computers_total = computers_initial + computers_added
result = computers_total
return result
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
# solution in Python:
def solution():
"""Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?"""
toys_initial = 5
mom_toys = 2
dad_toys = 2
total_received = mom_toys + dad_toys
total_toys = toys_initial + total_received
result = total_toys
return result
Q: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?
# solution in Python:
def solution():
"""Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?"""
jason_lollipops_initial = 20
jason_lollipops_after = 12
denny_lollipops = jason_lollipops_initial - jason_lollipops_after
result = denny_lollipops
return result
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
# solution in Python:
def solution():
"""Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?"""
leah_chocolates = 32
sister_chocolates = 42
total_chocolates = leah_chocolates + sister_chocolates
chocolates_eaten = 35
chocolates_left = total_chocolates - chocolates_eaten
result = chocolates_left
return result
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
# solution in Python:
def solution():
"""If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?"""
cars_initial = 3
cars_arrived = 2
total_cars = cars_initial + cars_arrived
result = total_cars
return result
Q: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?
# solution in Python:
def solution():
"""There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today?"""
trees_initial = 15
trees_after = 21
trees_added = trees_after - trees_initial
result = trees_added
return result
Q: {question}
# solution in Python:
'''.strip()
+ "\n\n\n"
)
MATH_PROMPT = PromptTemplate(input_variables=["question"], template=template)