Harrison/official pre release (#8106)

This commit is contained in:
Harrison Chase
2023-07-21 18:44:32 -07:00
committed by GitHub
parent 95bcf68802
commit aa0e69bc98
65 changed files with 210 additions and 602 deletions

View File

@@ -0,0 +1,9 @@
from langchain_experimental.plan_and_execute.agent_executor import PlanAndExecute
from langchain_experimental.plan_and_execute.executors.agent_executor import (
load_agent_executor,
)
from langchain_experimental.plan_and_execute.planners.chat_planner import (
load_chat_planner,
)
__all__ = ["PlanAndExecute", "load_agent_executor", "load_chat_planner"]

View File

@@ -0,0 +1,60 @@
from typing import Any, Dict, List, Optional
from langchain.callbacks.manager import CallbackManagerForChainRun
from langchain.chains.base import Chain
from pydantic import Field
from langchain_experimental.plan_and_execute.executors.base import BaseExecutor
from langchain_experimental.plan_and_execute.planners.base import BasePlanner
from langchain_experimental.plan_and_execute.schema import (
BaseStepContainer,
ListStepContainer,
)
class PlanAndExecute(Chain):
planner: BasePlanner
executor: BaseExecutor
step_container: BaseStepContainer = Field(default_factory=ListStepContainer)
input_key: str = "input"
output_key: str = "output"
@property
def input_keys(self) -> List[str]:
return [self.input_key]
@property
def output_keys(self) -> List[str]:
return [self.output_key]
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
plan = self.planner.plan(
inputs,
callbacks=run_manager.get_child() if run_manager else None,
)
if run_manager:
run_manager.on_text(str(plan), verbose=self.verbose)
for step in plan.steps:
_new_inputs = {
"previous_steps": self.step_container,
"current_step": step,
"objective": inputs[self.input_key],
}
new_inputs = {**_new_inputs, **inputs}
response = self.executor.step(
new_inputs,
callbacks=run_manager.get_child() if run_manager else None,
)
if run_manager:
run_manager.on_text(
f"*****\n\nStep: {step.value}", verbose=self.verbose
)
run_manager.on_text(
f"\n\nResponse: {response.response}", verbose=self.verbose
)
self.step_container.add_step(step, response)
return {self.output_key: self.step_container.get_final_response()}

View File

@@ -0,0 +1,55 @@
from typing import List
from langchain.agents.agent import AgentExecutor
from langchain.agents.structured_chat.base import StructuredChatAgent
from langchain.schema.language_model import BaseLanguageModel
from langchain.tools import BaseTool
from langchain_experimental.plan_and_execute.executors.base import ChainExecutor
HUMAN_MESSAGE_TEMPLATE = """Previous steps: {previous_steps}
Current objective: {current_step}
{agent_scratchpad}"""
TASK_PREFIX = """{objective}
"""
def load_agent_executor(
llm: BaseLanguageModel,
tools: List[BaseTool],
verbose: bool = False,
include_task_in_prompt: bool = False,
) -> ChainExecutor:
"""
Load an agent executor.
Args:
llm: BaseLanguageModel
tools: List[BaseTool]
verbose: bool. Defaults to False.
include_task_in_prompt: bool. Defaults to False.
Returns:
ChainExecutor
"""
input_variables = ["previous_steps", "current_step", "agent_scratchpad"]
template = HUMAN_MESSAGE_TEMPLATE
if include_task_in_prompt:
input_variables.append("objective")
template = TASK_PREFIX + template
agent = StructuredChatAgent.from_llm_and_tools(
llm,
tools,
human_message_template=template,
input_variables=input_variables,
)
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent, tools=tools, verbose=verbose
)
return ChainExecutor(chain=agent_executor)

View File

@@ -0,0 +1,40 @@
from abc import abstractmethod
from typing import Any
from langchain.callbacks.manager import Callbacks
from langchain.chains.base import Chain
from pydantic import BaseModel
from langchain_experimental.plan_and_execute.schema import StepResponse
class BaseExecutor(BaseModel):
@abstractmethod
def step(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> StepResponse:
"""Take step."""
@abstractmethod
async def astep(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> StepResponse:
"""Take step."""
class ChainExecutor(BaseExecutor):
chain: Chain
def step(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> StepResponse:
"""Take step."""
response = self.chain.run(**inputs, callbacks=callbacks)
return StepResponse(response=response)
async def astep(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> StepResponse:
"""Take step."""
response = await self.chain.arun(**inputs, callbacks=callbacks)
return StepResponse(response=response)

View File

@@ -0,0 +1,40 @@
from abc import abstractmethod
from typing import Any, List, Optional
from langchain.callbacks.manager import Callbacks
from langchain.chains.llm import LLMChain
from pydantic import BaseModel
from langchain_experimental.plan_and_execute.schema import Plan, PlanOutputParser
class BasePlanner(BaseModel):
@abstractmethod
def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan:
"""Given input, decide what to do."""
@abstractmethod
async def aplan(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> Plan:
"""Given input, decide what to do."""
class LLMPlanner(BasePlanner):
llm_chain: LLMChain
output_parser: PlanOutputParser
stop: Optional[List] = None
def plan(self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any) -> Plan:
"""Given input, decide what to do."""
llm_response = self.llm_chain.run(**inputs, stop=self.stop, callbacks=callbacks)
return self.output_parser.parse(llm_response)
async def aplan(
self, inputs: dict, callbacks: Callbacks = None, **kwargs: Any
) -> Plan:
"""Given input, decide what to do."""
llm_response = await self.llm_chain.arun(
**inputs, stop=self.stop, callbacks=callbacks
)
return self.output_parser.parse(llm_response)

View File

@@ -0,0 +1,56 @@
import re
from langchain.chains import LLMChain
from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import SystemMessage
from langchain_experimental.plan_and_execute.planners.base import LLMPlanner
from langchain_experimental.plan_and_execute.schema import (
Plan,
PlanOutputParser,
Step,
)
SYSTEM_PROMPT = (
"Let's first understand the problem and devise a plan to solve the problem."
" Please output the plan starting with the header 'Plan:' "
"and then followed by a numbered list of steps. "
"Please make the plan the minimum number of steps required "
"to accurately complete the task. If the task is a question, "
"the final step should almost always be 'Given the above steps taken, "
"please respond to the users original question'. "
"At the end of your plan, say '<END_OF_PLAN>'"
)
class PlanningOutputParser(PlanOutputParser):
def parse(self, text: str) -> Plan:
steps = [Step(value=v) for v in re.split("\n\s*\d+\. ", text)[1:]]
return Plan(steps=steps)
def load_chat_planner(
llm: BaseLanguageModel, system_prompt: str = SYSTEM_PROMPT
) -> LLMPlanner:
"""
Load a chat planner.
Args:
llm: Language model.
system_prompt: System prompt.
Returns:
LLMPlanner
"""
prompt_template = ChatPromptTemplate.from_messages(
[
SystemMessage(content=system_prompt),
HumanMessagePromptTemplate.from_template("{input}"),
]
)
llm_chain = LLMChain(llm=llm, prompt=prompt_template)
return LLMPlanner(
llm_chain=llm_chain,
output_parser=PlanningOutputParser(),
stop=["<END_OF_PLAN>"],
)

View File

@@ -0,0 +1,46 @@
from abc import abstractmethod
from typing import List, Tuple
from langchain.schema import BaseOutputParser
from pydantic import BaseModel, Field
class Step(BaseModel):
value: str
class Plan(BaseModel):
steps: List[Step]
class StepResponse(BaseModel):
response: str
class BaseStepContainer(BaseModel):
@abstractmethod
def add_step(self, step: Step, step_response: StepResponse) -> None:
"""Add step and step response to the container."""
@abstractmethod
def get_final_response(self) -> str:
"""Return the final response based on steps taken."""
class ListStepContainer(BaseStepContainer):
steps: List[Tuple[Step, StepResponse]] = Field(default_factory=list)
def add_step(self, step: Step, step_response: StepResponse) -> None:
self.steps.append((step, step_response))
def get_steps(self) -> List[Tuple[Step, StepResponse]]:
return self.steps
def get_final_response(self) -> str:
return self.steps[-1][1].response
class PlanOutputParser(BaseOutputParser):
@abstractmethod
def parse(self, text: str) -> Plan:
"""Parse into a plan."""