community: update Memgraph integration (#27017)

**Description:**
- **Memgraph** no longer relies on `Neo4jGraphStore` but **implements
`GraphStore`**, just like other graph databases.
- **Memgraph** no longer relies on `GraphQAChain`, but implements
`MemgraphQAChain`, just like other graph databases.
- The refresh schema procedure has been updated to try using `SHOW
SCHEMA INFO`. The fallback uses Cypher queries (a combination of schema
and Cypher) → **LangChain integration no longer relies on MAGE
library**.
- The **schema structure** has been reformatted. Regardless of the
procedures used to get schema, schema structure is the same.
- The `add_graph_documents()` method has been implemented. It transforms
`GraphDocument` into Cypher queries and creates a graph in Memgraph. It
implements the ability to use `baseEntityLabel` to improve speed
(`baseEntityLabel` has an index on the `id` property). It also
implements the ability to include sources by creating a `MENTIONS`
relationship to the source document.
- Jupyter Notebook for Memgraph has been updated.
- **Issue:** /
- **Dependencies:** /
- **Twitter handle:** supe_katarina (DX Engineer @ Memgraph)

Closes #25606
This commit is contained in:
Katarina Supe 2024-12-10 16:57:21 +01:00 committed by GitHub
parent 5c6e2cbcda
commit aba2711e7f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 1516 additions and 492 deletions

File diff suppressed because it is too large Load Diff

BIN
docs/static/img/memgraph_kg.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 117 KiB

BIN
docs/static/img/memgraph_kg_2.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

BIN
docs/static/img/memgraph_kg_3.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

BIN
docs/static/img/memgraph_kg_4.png vendored Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 251 KiB

View File

@ -0,0 +1,316 @@
"""Question answering over a graph."""
from __future__ import annotations
import re
from typing import Any, Dict, List, Optional, Union
from langchain.chains.base import Chain
from langchain_core.callbacks import CallbackManagerForChainRun
from langchain_core.language_models import BaseLanguageModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import (
BasePromptTemplate,
ChatPromptTemplate,
HumanMessagePromptTemplate,
MessagesPlaceholder,
)
from langchain_core.runnables import Runnable
from pydantic import Field
from langchain_community.chains.graph_qa.prompts import (
MEMGRAPH_GENERATION_PROMPT,
MEMGRAPH_QA_PROMPT,
)
from langchain_community.graphs.memgraph_graph import MemgraphGraph
INTERMEDIATE_STEPS_KEY = "intermediate_steps"
FUNCTION_RESPONSE_SYSTEM = """You are an assistant that helps to form nice and human
understandable answers based on the provided information from tools.
Do not add any other information that wasn't present in the tools, and use
very concise style in interpreting results!
"""
def extract_cypher(text: str) -> str:
"""Extract Cypher code from a text.
Args:
text: Text to extract Cypher code from.
Returns:
Cypher code extracted from the text.
"""
# The pattern to find Cypher code enclosed in triple backticks
pattern = r"```(.*?)```"
# Find all matches in the input text
matches = re.findall(pattern, text, re.DOTALL)
return matches[0] if matches else text
def get_function_response(
question: str, context: List[Dict[str, Any]]
) -> List[BaseMessage]:
TOOL_ID = "call_H7fABDuzEau48T10Qn0Lsh0D"
messages = [
AIMessage(
content="",
additional_kwargs={
"tool_calls": [
{
"id": TOOL_ID,
"function": {
"arguments": '{"question":"' + question + '"}',
"name": "GetInformation",
},
"type": "function",
}
]
},
),
ToolMessage(content=str(context), tool_call_id=TOOL_ID),
]
return messages
class MemgraphQAChain(Chain):
"""Chain for question-answering against a graph by generating Cypher statements.
*Security note*: Make sure that the database connection uses credentials
that are narrowly-scoped to only include necessary permissions.
Failure to do so may result in data corruption or loss, since the calling
code may attempt commands that would result in deletion, mutation
of data if appropriately prompted or reading sensitive data if such
data is present in the database.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this tool.
See https://python.langchain.com/docs/security for more information.
"""
graph: MemgraphGraph = Field(exclude=True)
cypher_generation_chain: Runnable
qa_chain: Runnable
graph_schema: str
input_key: str = "query" #: :meta private:
output_key: str = "result" #: :meta private:
top_k: int = 10
"""Number of results to return from the query"""
return_intermediate_steps: bool = False
"""Whether or not to return the intermediate steps along with the final answer."""
return_direct: bool = False
"""Optional cypher validation tool"""
use_function_response: bool = False
"""Whether to wrap the database context as tool/function response"""
allow_dangerous_requests: bool = False
"""Forced user opt-in to acknowledge that the chain can make dangerous requests.
*Security note*: Make sure that the database connection uses credentials
that are narrowly-scoped to only include necessary permissions.
Failure to do so may result in data corruption or loss, since the calling
code may attempt commands that would result in deletion, mutation
of data if appropriately prompted or reading sensitive data if such
data is present in the database.
The best way to guard against such negative outcomes is to (as appropriate)
limit the permissions granted to the credentials used with this tool.
See https://python.langchain.com/docs/security for more information.
"""
def __init__(self, **kwargs: Any) -> None:
"""Initialize the chain."""
super().__init__(**kwargs)
if self.allow_dangerous_requests is not True:
raise ValueError(
"In order to use this chain, you must acknowledge that it can make "
"dangerous requests by setting `allow_dangerous_requests` to `True`."
"You must narrowly scope the permissions of the database connection "
"to only include necessary permissions. Failure to do so may result "
"in data corruption or loss or reading sensitive data if such data is "
"present in the database."
"Only use this chain if you understand the risks and have taken the "
"necessary precautions. "
"See https://python.langchain.com/docs/security for more information."
)
@property
def input_keys(self) -> List[str]:
"""Return the input keys.
:meta private:
"""
return [self.input_key]
@property
def output_keys(self) -> List[str]:
"""Return the output keys.
:meta private:
"""
_output_keys = [self.output_key]
return _output_keys
@property
def _chain_type(self) -> str:
return "graph_cypher_chain"
@classmethod
def from_llm(
cls,
llm: Optional[BaseLanguageModel] = None,
*,
qa_prompt: Optional[BasePromptTemplate] = None,
cypher_prompt: Optional[BasePromptTemplate] = None,
cypher_llm: Optional[BaseLanguageModel] = None,
qa_llm: Optional[Union[BaseLanguageModel, Any]] = None,
qa_llm_kwargs: Optional[Dict[str, Any]] = None,
cypher_llm_kwargs: Optional[Dict[str, Any]] = None,
use_function_response: bool = False,
function_response_system: str = FUNCTION_RESPONSE_SYSTEM,
**kwargs: Any,
) -> MemgraphQAChain:
"""Initialize from LLM."""
if not cypher_llm and not llm:
raise ValueError("Either `llm` or `cypher_llm` parameters must be provided")
if not qa_llm and not llm:
raise ValueError("Either `llm` or `qa_llm` parameters must be provided")
if cypher_llm and qa_llm and llm:
raise ValueError(
"You can specify up to two of 'cypher_llm', 'qa_llm'"
", and 'llm', but not all three simultaneously."
)
if cypher_prompt and cypher_llm_kwargs:
raise ValueError(
"Specifying cypher_prompt and cypher_llm_kwargs together is"
" not allowed. Please pass prompt via cypher_llm_kwargs."
)
if qa_prompt and qa_llm_kwargs:
raise ValueError(
"Specifying qa_prompt and qa_llm_kwargs together is"
" not allowed. Please pass prompt via qa_llm_kwargs."
)
use_qa_llm_kwargs = qa_llm_kwargs if qa_llm_kwargs is not None else {}
use_cypher_llm_kwargs = (
cypher_llm_kwargs if cypher_llm_kwargs is not None else {}
)
if "prompt" not in use_qa_llm_kwargs:
use_qa_llm_kwargs["prompt"] = (
qa_prompt if qa_prompt is not None else MEMGRAPH_QA_PROMPT
)
if "prompt" not in use_cypher_llm_kwargs:
use_cypher_llm_kwargs["prompt"] = (
cypher_prompt
if cypher_prompt is not None
else MEMGRAPH_GENERATION_PROMPT
)
qa_llm = qa_llm or llm
if use_function_response:
try:
qa_llm.bind_tools({}) # type: ignore[union-attr]
response_prompt = ChatPromptTemplate.from_messages(
[
SystemMessage(content=function_response_system),
HumanMessagePromptTemplate.from_template("{question}"),
MessagesPlaceholder(variable_name="function_response"),
]
)
qa_chain = response_prompt | qa_llm | StrOutputParser() # type: ignore
except (NotImplementedError, AttributeError):
raise ValueError("Provided LLM does not support native tools/functions")
else:
qa_chain = use_qa_llm_kwargs["prompt"] | qa_llm | StrOutputParser() # type: ignore
prompt = use_cypher_llm_kwargs["prompt"]
llm_to_use = cypher_llm if cypher_llm is not None else llm
if prompt is not None and llm_to_use is not None:
cypher_generation_chain = prompt | llm_to_use | StrOutputParser() # type: ignore[arg-type]
else:
raise ValueError(
"Missing required components for the cypher generation chain: "
"'prompt' or 'llm'"
)
graph_schema = kwargs["graph"].get_schema
return cls(
graph_schema=graph_schema,
qa_chain=qa_chain,
cypher_generation_chain=cypher_generation_chain,
use_function_response=use_function_response,
**kwargs,
)
def _call(
self,
inputs: Dict[str, Any],
run_manager: Optional[CallbackManagerForChainRun] = None,
) -> Dict[str, Any]:
"""Generate Cypher statement, use it to look up in db and answer question."""
_run_manager = run_manager or CallbackManagerForChainRun.get_noop_manager()
callbacks = _run_manager.get_child()
question = inputs[self.input_key]
args = {
"question": question,
"schema": self.graph_schema,
}
args.update(inputs)
intermediate_steps: List = []
generated_cypher = self.cypher_generation_chain.invoke(
args, callbacks=callbacks
)
# Extract Cypher code if it is wrapped in backticks
generated_cypher = extract_cypher(generated_cypher)
_run_manager.on_text("Generated Cypher:", end="\n", verbose=self.verbose)
_run_manager.on_text(
generated_cypher, color="green", end="\n", verbose=self.verbose
)
intermediate_steps.append({"query": generated_cypher})
# Retrieve and limit the number of results
# Generated Cypher be null if query corrector identifies invalid schema
if generated_cypher:
context = self.graph.query(generated_cypher)[: self.top_k]
else:
context = []
if self.return_direct:
result = context
else:
_run_manager.on_text("Full Context:", end="\n", verbose=self.verbose)
_run_manager.on_text(
str(context), color="green", end="\n", verbose=self.verbose
)
intermediate_steps.append({"context": context})
if self.use_function_response:
function_response = get_function_response(question, context)
result = self.qa_chain.invoke( # type: ignore
{"question": question, "function_response": function_response},
)
else:
result = self.qa_chain.invoke( # type: ignore
{"question": question, "context": context},
callbacks=callbacks,
)
chain_result: Dict[str, Any] = {"result": result}
if self.return_intermediate_steps:
chain_result[INTERMEDIATE_STEPS_KEY] = intermediate_steps
return chain_result

View File

@ -411,3 +411,58 @@ NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_PROMPT = PromptTemplate(
input_variables=["schema", "question", "extra_instructions"], input_variables=["schema", "question", "extra_instructions"],
template=NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE, template=NEPTUNE_OPENCYPHER_GENERATION_SIMPLE_TEMPLATE,
) )
MEMGRAPH_GENERATION_TEMPLATE = """Your task is to directly translate natural language inquiry into precise and executable Cypher query for Memgraph database.
You will utilize a provided database schema to understand the structure, nodes and relationships within the Memgraph database.
Instructions:
- Use provided node and relationship labels and property names from the
schema which describes the database's structure. Upon receiving a user
question, synthesize the schema to craft a precise Cypher query that
directly corresponds to the user's intent.
- Generate valid executable Cypher queries on top of Memgraph database.
Any explanation, context, or additional information that is not a part
of the Cypher query syntax should be omitted entirely.
- Use Memgraph MAGE procedures instead of Neo4j APOC procedures.
- Do not include any explanations or apologies in your responses.
- Do not include any text except the generated Cypher statement.
- For queries that ask for information or functionalities outside the direct
generation of Cypher queries, use the Cypher query format to communicate
limitations or capabilities. For example: RETURN "I am designed to generate
Cypher queries based on the provided schema only."
Schema:
{schema}
With all the above information and instructions, generate Cypher query for the
user question.
The question is:
{question}"""
MEMGRAPH_GENERATION_PROMPT = PromptTemplate(
input_variables=["schema", "question"], template=MEMGRAPH_GENERATION_TEMPLATE
)
MEMGRAPH_QA_TEMPLATE = """Your task is to form nice and human
understandable answers. The information part contains the provided
information that you must use to construct an answer.
The provided information is authoritative, you must never doubt it or try to
use your internal knowledge to correct it. Make the answer sound as a
response to the question. Do not mention that you based the result on the
given information. Here is an example:
Question: Which managers own Neo4j stocks?
Context:[manager:CTL LLC, manager:JANE STREET GROUP LLC]
Helpful Answer: CTL LLC, JANE STREET GROUP LLC owns Neo4j stocks.
Follow this example when generating answers. If the provided information is
empty, say that you don't know the answer.
Information:
{context}
Question: {question}
Helpful Answer:"""
MEMGRAPH_QA_PROMPT = PromptTemplate(
input_variables=["context", "question"], template=MEMGRAPH_QA_TEMPLATE
)

View File

@ -1,15 +1,272 @@
from langchain_community.graphs.neo4j_graph import Neo4jGraph import logging
from hashlib import md5
from typing import Any, Dict, List, Optional
from langchain_core.utils import get_from_dict_or_env
from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_community.graphs.graph_store import GraphStore
logger = logging.getLogger(__name__)
BASE_ENTITY_LABEL = "__Entity__"
SCHEMA_QUERY = """ SCHEMA_QUERY = """
CALL llm_util.schema("raw") SHOW SCHEMA INFO
YIELD * """
RETURN *
NODE_PROPERTIES_QUERY = """
CALL schema.node_type_properties()
YIELD nodeType AS label, propertyName AS property, propertyTypes AS type
WITH label AS nodeLabels, collect({key: property, types: type}) AS properties
RETURN {labels: nodeLabels, properties: properties} AS output
"""
REL_QUERY = """
MATCH (n)-[e]->(m)
WITH DISTINCT
labels(n) AS start_node_labels,
type(e) AS rel_type,
labels(m) AS end_node_labels,
e,
keys(e) AS properties
UNWIND CASE WHEN size(properties) > 0 THEN properties ELSE [null] END AS prop
WITH
start_node_labels,
rel_type,
end_node_labels,
CASE WHEN prop IS NULL THEN [] ELSE [prop, valueType(e[prop])] END AS property_info
RETURN
start_node_labels,
rel_type,
end_node_labels,
COLLECT(DISTINCT CASE
WHEN property_info <> []
THEN property_info
ELSE null END) AS properties_info
"""
NODE_IMPORT_QUERY = """
UNWIND $data AS row
CALL merge.node(row.label, row.properties, {}, {})
YIELD node
RETURN distinct 'done' AS result
"""
REL_NODES_IMPORT_QUERY = """
UNWIND $data AS row
MERGE (source {id: row.source_id})
MERGE (target {id: row.target_id})
RETURN distinct 'done' AS result
"""
REL_IMPORT_QUERY = """
UNWIND $data AS row
MATCH (source {id: row.source_id})
MATCH (target {id: row.target_id})
WITH source, target, row
CALL merge.relationship(source, row.type, {}, {}, target, {})
YIELD rel
RETURN distinct 'done' AS result
"""
INCLUDE_DOCS_QUERY = """
MERGE (d:Document {id:$document.metadata.id})
SET d.content = $document.page_content
SET d += $document.metadata
RETURN distinct 'done' AS result
"""
INCLUDE_DOCS_SOURCE_QUERY = """
UNWIND $data AS row
MATCH (source {id: row.source_id}), (d:Document {id: $document.metadata.id})
MERGE (d)-[:MENTIONS]->(source)
RETURN distinct 'done' AS result
"""
NODE_PROPS_TEXT = """
Node labels and properties (name and type) are:
"""
REL_PROPS_TEXT = """
Relationship labels and properties are:
"""
REL_TEXT = """
Nodes are connected with the following relationships:
""" """
class MemgraphGraph(Neo4jGraph): def get_schema_subset(data: Dict[str, Any]) -> Dict[str, Any]:
return {
"edges": [
{
"end_node_labels": edge["end_node_labels"],
"properties": [
{
"key": prop["key"],
"types": [
{"type": type_item["type"].lower()}
for type_item in prop["types"]
],
}
for prop in edge["properties"]
],
"start_node_labels": edge["start_node_labels"],
"type": edge["type"],
}
for edge in data["edges"]
],
"nodes": [
{
"labels": node["labels"],
"properties": [
{
"key": prop["key"],
"types": [
{"type": type_item["type"].lower()}
for type_item in prop["types"]
],
}
for prop in node["properties"]
],
}
for node in data["nodes"]
],
}
def get_reformated_schema(
nodes: List[Dict[str, Any]], rels: List[Dict[str, Any]]
) -> Dict[str, Any]:
return {
"edges": [
{
"end_node_labels": rel["end_node_labels"],
"properties": [
{"key": prop[0], "types": [{"type": prop[1].lower()}]}
for prop in rel["properties_info"]
],
"start_node_labels": rel["start_node_labels"],
"type": rel["rel_type"],
}
for rel in rels
],
"nodes": [
{
"labels": [_remove_backticks(node["labels"])[1:]],
"properties": [
{
"key": prop["key"],
"types": [
{"type": type_item.lower()} for type_item in prop["types"]
],
}
for prop in node["properties"]
if node["properties"][0]["key"] != ""
],
}
for node in nodes
],
}
def transform_schema_to_text(schema: Dict[str, Any]) -> str:
node_props_data = ""
rel_props_data = ""
rel_data = ""
for node in schema["nodes"]:
node_props_data += f"- labels: (:{':'.join(node['labels'])})\n"
if node["properties"] == []:
continue
node_props_data += " properties:\n"
for prop in node["properties"]:
prop_types_str = " or ".join(
{prop_types["type"] for prop_types in prop["types"]}
)
node_props_data += f" - {prop['key']}: {prop_types_str}\n"
for rel in schema["edges"]:
rel_type = rel["type"]
start_labels = ":".join(rel["start_node_labels"])
end_labels = ":".join(rel["end_node_labels"])
rel_data += f"(:{start_labels})-[:{rel_type}]->(:{end_labels})\n"
if rel["properties"] == []:
continue
rel_props_data += f"- labels: {rel_type}\n properties:\n"
for prop in rel["properties"]:
prop_types_str = " or ".join(
{prop_types["type"].lower() for prop_types in prop["types"]}
)
rel_props_data += f" - {prop['key']}: {prop_types_str}\n"
return "".join(
[
NODE_PROPS_TEXT + node_props_data if node_props_data else "",
REL_PROPS_TEXT + rel_props_data if rel_props_data else "",
REL_TEXT + rel_data if rel_data else "",
]
)
def _remove_backticks(text: str) -> str:
return text.replace("`", "")
def _transform_nodes(nodes: list[Node], baseEntityLabel: bool) -> List[dict]:
transformed_nodes = []
for node in nodes:
properties_dict = node.properties | {"id": node.id}
label = (
[_remove_backticks(node.type), BASE_ENTITY_LABEL]
if baseEntityLabel
else [_remove_backticks(node.type)]
)
node_dict = {"label": label, "properties": properties_dict}
transformed_nodes.append(node_dict)
return transformed_nodes
def _transform_relationships(
relationships: list[Relationship], baseEntityLabel: bool
) -> List[dict]:
transformed_relationships = []
for rel in relationships:
rel_dict = {
"type": _remove_backticks(rel.type),
"source_label": (
[BASE_ENTITY_LABEL]
if baseEntityLabel
else [_remove_backticks(rel.source.type)]
),
"source_id": rel.source.id,
"target_label": (
[BASE_ENTITY_LABEL]
if baseEntityLabel
else [_remove_backticks(rel.target.type)]
),
"target_id": rel.target.id,
}
transformed_relationships.append(rel_dict)
return transformed_relationships
class MemgraphGraph(GraphStore):
"""Memgraph wrapper for graph operations. """Memgraph wrapper for graph operations.
Parameters:
url (Optional[str]): The URL of the Memgraph database server.
username (Optional[str]): The username for database authentication.
password (Optional[str]): The password for database authentication.
database (str): The name of the database to connect to. Default is 'memgraph'.
refresh_schema (bool): A flag whether to refresh schema information
at initialization. Default is True.
driver_config (Dict): Configuration passed to Neo4j Driver.
*Security note*: Make sure that the database connection uses credentials *Security note*: Make sure that the database connection uses credentials
that are narrowly-scoped to only include necessary permissions. that are narrowly-scoped to only include necessary permissions.
Failure to do so may result in data corruption or loss, since the calling Failure to do so may result in data corruption or loss, since the calling
@ -23,49 +280,247 @@ class MemgraphGraph(Neo4jGraph):
""" """
def __init__( def __init__(
self, url: str, username: str, password: str, *, database: str = "memgraph" self,
url: Optional[str] = None,
username: Optional[str] = None,
password: Optional[str] = None,
database: Optional[str] = None,
refresh_schema: bool = True,
*,
driver_config: Optional[Dict] = None,
) -> None: ) -> None:
"""Create a new Memgraph graph wrapper instance.""" """Create a new Memgraph graph wrapper instance."""
super().__init__(url, username, password, database=database) try:
import neo4j
except ImportError:
raise ImportError(
"Could not import neo4j python package. "
"Please install it with `pip install neo4j`."
)
url = get_from_dict_or_env({"url": url}, "url", "MEMGRAPH_URI")
# if username and password are "", assume auth is disabled
if username == "" and password == "":
auth = None
else:
username = get_from_dict_or_env(
{"username": username},
"username",
"MEMGRAPH_USERNAME",
)
password = get_from_dict_or_env(
{"password": password},
"password",
"MEMGRAPH_PASSWORD",
)
auth = (username, password)
database = get_from_dict_or_env(
{"database": database}, "database", "MEMGRAPH_DATABASE", "memgraph"
)
self._driver = neo4j.GraphDatabase.driver(
url, auth=auth, **(driver_config or {})
)
self._database = database
self.schema: str = ""
self.structured_schema: Dict[str, Any] = {}
# Verify connection
try:
self._driver.verify_connectivity()
except neo4j.exceptions.ServiceUnavailable:
raise ValueError(
"Could not connect to Memgraph database. "
"Please ensure that the url is correct"
)
except neo4j.exceptions.AuthError:
raise ValueError(
"Could not connect to Memgraph database. "
"Please ensure that the username and password are correct"
)
# Set schema
if refresh_schema:
try:
self.refresh_schema()
except neo4j.exceptions.ClientError as e:
raise e
def close(self) -> None:
if self._driver:
logger.info("Closing the driver connection.")
self._driver.close()
self._driver = None
@property
def get_schema(self) -> str:
"""Returns the schema of the Graph database"""
return self.schema
@property
def get_structured_schema(self) -> Dict[str, Any]:
"""Returns the structured schema of the Graph database"""
return self.structured_schema
def query(self, query: str, params: dict = {}) -> List[Dict[str, Any]]:
"""Query the graph.
Args:
query (str): The Cypher query to execute.
params (dict): The parameters to pass to the query.
Returns:
List[Dict[str, Any]]: The list of dictionaries containing the query results.
"""
from neo4j.exceptions import Neo4jError
try:
data, _, _ = self._driver.execute_query(
query,
database_=self._database,
parameters_=params,
)
json_data = [r.data() for r in data]
return json_data
except Neo4jError as e:
if not (
(
( # isCallInTransactionError
e.code == "Neo.DatabaseError.Statement.ExecutionFailed"
or e.code
== "Neo.DatabaseError.Transaction.TransactionStartFailed"
)
and "in an implicit transaction" in e.message
)
or ( # isPeriodicCommitError
e.code == "Neo.ClientError.Statement.SemanticError"
and (
"in an open transaction is not possible" in e.message
or "tried to execute in an explicit transaction" in e.message
)
)
or (
e.code == "Memgraph.ClientError.MemgraphError.MemgraphError"
and ("in multicommand transactions" in e.message)
)
or (
e.code == "Memgraph.ClientError.MemgraphError.MemgraphError"
and "SchemaInfo disabled" in e.message
)
):
raise
# fallback to allow implicit transactions
with self._driver.session(database=self._database) as session:
data = session.run(query, params)
json_data = [r.data() for r in data]
return json_data
def refresh_schema(self) -> None: def refresh_schema(self) -> None:
""" """
Refreshes the Memgraph graph schema information. Refreshes the Memgraph graph schema information.
""" """
import ast
db_structured_schema = self.query(SCHEMA_QUERY)[0].get("schema") from neo4j.exceptions import Neo4jError
assert db_structured_schema is not None
self.structured_schema = db_structured_schema
# Format node properties # leave schema empty if db is empty
formatted_node_props = [] if self.query("MATCH (n) RETURN n LIMIT 1") == []:
return
for node_name, properties in db_structured_schema["node_props"].items(): # first try with SHOW SCHEMA INFO
formatted_node_props.append( try:
f"Node name: '{node_name}', Node properties: {properties}" result = self.query(SCHEMA_QUERY)[0].get("schema")
if result is not None and isinstance(result, (str, ast.AST)):
schema_result = ast.literal_eval(result)
else:
schema_result = result
assert schema_result is not None
structured_schema = get_schema_subset(schema_result)
self.structured_schema = structured_schema
self.schema = transform_schema_to_text(structured_schema)
return
except Neo4jError as e:
if (
e.code == "Memgraph.ClientError.MemgraphError.MemgraphError"
and "SchemaInfo disabled" in e.message
):
logger.info(
"Schema generation with SHOW SCHEMA INFO query failed. "
"Set --schema-info-enabled=true to use SHOW SCHEMA INFO query. "
"Falling back to alternative queries."
)
# fallback on Cypher without SHOW SCHEMA INFO
nodes = [query["output"] for query in self.query(NODE_PROPERTIES_QUERY)]
rels = self.query(REL_QUERY)
structured_schema = get_reformated_schema(nodes, rels)
self.structured_schema = structured_schema
self.schema = transform_schema_to_text(structured_schema)
def add_graph_documents(
self,
graph_documents: List[GraphDocument],
include_source: bool = False,
baseEntityLabel: bool = False,
) -> None:
"""
Take GraphDocument as input as uses it to construct a graph in Memgraph.
Parameters:
- graph_documents (List[GraphDocument]): A list of GraphDocument objects
that contain the nodes and relationships to be added to the graph. Each
GraphDocument should encapsulate the structure of part of the graph,
including nodes, relationships, and the source document information.
- include_source (bool, optional): If True, stores the source document
and links it to nodes in the graph using the MENTIONS relationship.
This is useful for tracing back the origin of data. Merges source
documents based on the `id` property from the source document metadata
if available; otherwise it calculates the MD5 hash of `page_content`
for merging process. Defaults to False.
- baseEntityLabel (bool, optional): If True, each newly created node
gets a secondary __Entity__ label, which is indexed and improves import
speed and performance. Defaults to False.
"""
if baseEntityLabel:
self.query(
f"CREATE CONSTRAINT ON (b:{BASE_ENTITY_LABEL}) "
"ASSERT b.id IS UNIQUE;"
)
self.query(f"CREATE INDEX ON :{BASE_ENTITY_LABEL}(id);")
self.query(f"CREATE INDEX ON :{BASE_ENTITY_LABEL};")
for document in graph_documents:
if include_source:
if not document.source.metadata.get("id"):
document.source.metadata["id"] = md5(
document.source.page_content.encode("utf-8")
).hexdigest()
self.query(INCLUDE_DOCS_QUERY, {"document": document.source.__dict__})
self.query(
NODE_IMPORT_QUERY,
{"data": _transform_nodes(document.nodes, baseEntityLabel)},
) )
# Format relationship properties rel_data = _transform_relationships(document.relationships, baseEntityLabel)
formatted_rel_props = [] self.query(
for rel_name, properties in db_structured_schema["rel_props"].items(): REL_NODES_IMPORT_QUERY,
formatted_rel_props.append( {"data": rel_data},
f"Relationship name: '{rel_name}', " )
f"Relationship properties: {properties}" self.query(
REL_IMPORT_QUERY,
{"data": rel_data},
) )
# Format relationships if include_source:
formatted_rels = [ self.query(
f"(:{rel['start']})-[:{rel['type']}]->(:{rel['end']})" INCLUDE_DOCS_SOURCE_QUERY,
for rel in db_structured_schema["relationships"] {"data": rel_data, "document": document.source.__dict__},
] )
self.refresh_schema()
self.schema = "\n".join(
[
"Node properties are the following:",
*formatted_node_props,
"Relationship properties are the following:",
*formatted_rel_props,
"The relationships are the following:",
*formatted_rels,
]
)

View File

@ -1,24 +1,44 @@
import os import os
from langchain_core.documents import Document
from langchain_community.graphs import MemgraphGraph from langchain_community.graphs import MemgraphGraph
from langchain_community.graphs.graph_document import GraphDocument, Node, Relationship
from langchain_community.graphs.memgraph_graph import NODE_PROPERTIES_QUERY, REL_QUERY
test_data = [
GraphDocument(
nodes=[Node(id="foo", type="foo"), Node(id="bar", type="bar")],
relationships=[
Relationship(
source=Node(id="foo", type="foo"),
target=Node(id="bar", type="bar"),
type="REL",
)
],
source=Document(page_content="source document"),
)
]
def test_cypher_return_correct_schema() -> None: def test_cypher_return_correct_schema() -> None:
"""Test that chain returns direct results.""" """Test that chain returns direct results."""
url = os.environ.get("MEMGRAPH_URI", "bolt://localhost:7687") url = os.environ.get("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.environ.get("MEMGRAPH_USERNAME", "") username = os.environ.get("MEMGRAPH_USERNAME", "")
password = os.environ.get("MEMGRAPH_PASSWORD", "") password = os.environ.get("MEMGRAPH_PASSWORD", "")
assert url is not None assert url is not None
assert username is not None assert username is not None
assert password is not None assert password is not None
graph = MemgraphGraph( graph = MemgraphGraph(url=url, username=username, password=password)
url=url,
username=username, # Drop graph
password=password, graph.query("STORAGE MODE IN_MEMORY_ANALYTICAL")
) graph.query("DROP GRAPH")
# Delete all nodes in the graph graph.query("STORAGE MODE IN_MEMORY_TRANSACTIONAL")
graph.query("MATCH (n) DETACH DELETE n")
# Create two nodes and a relationship # Create two nodes and a relationship
graph.query( graph.query(
""" """
@ -31,32 +51,123 @@ def test_cypher_return_correct_schema() -> None:
) )
# Refresh schema information # Refresh schema information
graph.refresh_schema() graph.refresh_schema()
relationships = graph.query(
"CALL llm_util.schema('raw') YIELD schema "
"WITH schema.relationships AS relationships "
"UNWIND relationships AS relationship "
"RETURN relationship['start'] AS start, "
"relationship['type'] AS type, "
"relationship['end'] AS end "
"ORDER BY start, type, end;"
)
node_props = graph.query( node_properties = graph.query(NODE_PROPERTIES_QUERY)
"CALL llm_util.schema('raw') YIELD schema " relationships = graph.query(REL_QUERY)
"WITH schema.node_props AS nodes "
"WITH nodes['LabelA'] AS properties "
"UNWIND properties AS property "
"RETURN property['property'] AS prop, "
"property['type'] AS type "
"ORDER BY prop ASC;"
)
expected_relationships = [ expected_node_properties = [
{"start": "LabelA", "type": "REL_TYPE", "end": "LabelB"}, {
{"start": "LabelA", "type": "REL_TYPE", "end": "LabelC"}, "output": {
"labels": ":`LabelA`",
"properties": [{"key": "property_a", "types": ["String"]}],
}
},
{"output": {"labels": ":`LabelB`", "properties": [{"key": "", "types": []}]}},
{"output": {"labels": ":`LabelC`", "properties": [{"key": "", "types": []}]}},
] ]
expected_node_props = [{"prop": "property_a", "type": "str"}] expected_relationships = [
{
"start_node_labels": ["LabelA"],
"rel_type": "REL_TYPE",
"end_node_labels": ["LabelC"],
"properties_info": [["rel_prop", "STRING"]],
},
{
"start_node_labels": ["LabelA"],
"rel_type": "REL_TYPE",
"end_node_labels": ["LabelB"],
"properties_info": [],
},
]
graph.close()
assert node_properties == expected_node_properties
assert relationships == expected_relationships assert relationships == expected_relationships
assert node_props == expected_node_props
def test_add_graph_documents() -> None:
"""Test that Memgraph correctly imports graph document."""
url = os.environ.get("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.environ.get("MEMGRAPH_USERNAME", "")
password = os.environ.get("MEMGRAPH_PASSWORD", "")
assert url is not None
assert username is not None
assert password is not None
graph = MemgraphGraph(
url=url, username=username, password=password, refresh_schema=False
)
# Drop graph
graph.query("STORAGE MODE IN_MEMORY_ANALYTICAL")
graph.query("DROP GRAPH")
graph.query("STORAGE MODE IN_MEMORY_TRANSACTIONAL")
# Create KG
graph.add_graph_documents(test_data)
output = graph.query("MATCH (n) RETURN labels(n) AS label, count(*) AS count")
# Close the connection
graph.close()
assert output == [{"label": ["bar"], "count": 1}, {"label": ["foo"], "count": 1}]
def test_add_graph_documents_base_entity() -> None:
"""Test that Memgraph correctly imports graph document with Entity label."""
url = os.environ.get("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.environ.get("MEMGRAPH_USERNAME", "")
password = os.environ.get("MEMGRAPH_PASSWORD", "")
assert url is not None
assert username is not None
assert password is not None
graph = MemgraphGraph(
url=url, username=username, password=password, refresh_schema=False
)
# Drop graph
graph.query("STORAGE MODE IN_MEMORY_ANALYTICAL")
graph.query("DROP GRAPH")
graph.query("STORAGE MODE IN_MEMORY_TRANSACTIONAL")
# Create KG
graph.add_graph_documents(test_data, baseEntityLabel=True)
output = graph.query("MATCH (n) RETURN labels(n) AS label, count(*) AS count")
# Close the connection
graph.close()
assert output == [
{"label": ["__Entity__", "bar"], "count": 1},
{"label": ["__Entity__", "foo"], "count": 1},
]
def test_add_graph_documents_include_source() -> None:
"""Test that Memgraph correctly imports graph document with source included."""
url = os.environ.get("MEMGRAPH_URI", "bolt://localhost:7687")
username = os.environ.get("MEMGRAPH_USERNAME", "")
password = os.environ.get("MEMGRAPH_PASSWORD", "")
assert url is not None
assert username is not None
assert password is not None
graph = MemgraphGraph(
url=url, username=username, password=password, refresh_schema=False
)
# Drop graph
graph.query("STORAGE MODE IN_MEMORY_ANALYTICAL")
graph.query("DROP GRAPH")
graph.query("STORAGE MODE IN_MEMORY_TRANSACTIONAL")
# Create KG
graph.add_graph_documents(test_data, include_source=True)
output = graph.query("MATCH (n) RETURN labels(n) AS label, count(*) AS count")
# Close the connection
graph.close()
assert output == [
{"label": ["bar"], "count": 1},
{"label": ["foo"], "count": 1},
{"label": ["Document"], "count": 1},
]