community: SamabanovaCloud tool calling and Structured output (#27967)

**Description:** Add tool calling and structured output support for
SambaNovaCloud chat models, docs included

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Jorge Piedrahita Ortiz 2024-11-20 14:12:08 -05:00 committed by GitHub
parent cb32bab69d
commit abaea28417
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 818 additions and 130 deletions

View File

@ -19,7 +19,7 @@
"source": [
"# ChatSambaNovaCloud\n",
"\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html).\n",
"This will help you getting started with SambaNovaCloud [chat models](/docs/concepts/chat_models). For detailed documentation of all ChatSambaNovaCloud features and configurations head to the [API reference](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html).\n",
"\n",
"**[SambaNova](https://sambanova.ai/)'s** [SambaNova Cloud](https://cloud.sambanova.ai/) is a platform for performing inference with open-source models\n",
"\n",
@ -28,13 +28,13 @@
"\n",
"| Class | Package | Local | Serializable | JS support | Package downloads | Package latest |\n",
"| :--- | :--- | :---: | :---: | :---: | :---: | :---: |\n",
"| [ChatSambaNovaCloud](https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html) | [langchain-community](https://python.langchain.com/v0.2/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n",
"| [ChatSambaNovaCloud](https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html) | [langchain-community](https://python.langchain.com/api_reference/community/index.html) | ❌ | ❌ | ❌ | ![PyPI - Downloads](https://img.shields.io/pypi/dm/langchain_community?style=flat-square&label=%20) | ![PyPI - Version](https://img.shields.io/pypi/v/langchain_community?style=flat-square&label=%20) |\n",
"\n",
"### Model features\n",
"\n",
"| [Tool calling](/docs/how_to/tool_calling) | [Structured output](/docs/how_to/structured_output/) | JSON mode | [Image input](/docs/how_to/multimodal_inputs/) | Audio input | Video input | [Token-level streaming](/docs/how_to/chat_streaming/) | Native async | [Token usage](/docs/how_to/chat_token_usage_tracking/) | [Logprobs](/docs/how_to/logprobs/) |\n",
"| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\n",
"| ❌ | ❌ | ❌ | ❌ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"| ✅ | ✅ | ✅ | ✅ | ❌ | ❌ | ✅ | ✅ | ✅ | ❌ | \n",
"\n",
"## Setup\n",
"\n",
@ -116,14 +116,18 @@
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.chat_models.sambanova import ChatSambaNovaCloud\n",
"\n",
"llm = ChatSambaNovaCloud(\n",
" model=\"llama3-405b\", max_tokens=1024, temperature=0.7, top_k=1, top_p=0.01\n",
" model=\"Meta-Llama-3.1-70B-Instruct\",\n",
" max_tokens=1024,\n",
" temperature=0.7,\n",
" top_k=1,\n",
" top_p=0.01,\n",
")"
]
},
@ -142,7 +146,7 @@
{
"data": {
"text/plain": [
"AIMessage(content=\"J'adore la programmation.\", response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 11, 'completion_tokens': 9, 'completion_tokens_after_first_per_sec': 97.07042823956884, 'completion_tokens_after_first_per_sec_first_ten': 276.3343994441849, 'completion_tokens_per_sec': 23.775192800224037, 'end_time': 1726158364.7954874, 'is_last_response': True, 'prompt_tokens': 56, 'start_time': 1726158364.3670964, 'time_to_first_token': 0.3459765911102295, 'total_latency': 0.3785458261316473, 'total_tokens': 65, 'total_tokens_per_sec': 171.70972577939582}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726158364}, id='7154b676-9d5a-4b1a-a425-73bbe69f28fc')"
"AIMessage(content=\"J'adore la programmation.\", additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 7, 'completion_tokens': 8, 'completion_tokens_after_first_per_sec': 195.0204119588971, 'completion_tokens_after_first_per_sec_first_ten': 618.3422770734173, 'completion_tokens_per_sec': 53.25837044790076, 'end_time': 1731535338.1864908, 'is_last_response': True, 'prompt_tokens': 55, 'start_time': 1731535338.0133238, 'time_to_first_token': 0.13727331161499023, 'total_latency': 0.15021112986973353, 'total_tokens': 63, 'total_tokens_per_sec': 419.4096672772185}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731535338}, id='f04b7c2c-bc46-47e0-9c6b-19a002e8f390')"
]
},
"execution_count": 3,
@ -196,7 +200,7 @@
{
"data": {
"text/plain": [
"AIMessage(content='Ich liebe Programmieren.', response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 11, 'completion_tokens': 6, 'completion_tokens_after_first_per_sec': 47.80258530102961, 'completion_tokens_after_first_per_sec_first_ten': 215.59002827036753, 'completion_tokens_per_sec': 5.263977583489829, 'end_time': 1726158506.3777263, 'is_last_response': True, 'prompt_tokens': 51, 'start_time': 1726158505.1611376, 'time_to_first_token': 1.1119918823242188, 'total_latency': 1.1398224830627441, 'total_tokens': 57, 'total_tokens_per_sec': 50.00778704315337}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726158505}, id='226471ac-8c52-44bb-baa7-f9d2f8c54477')"
"AIMessage(content='Ich liebe das Programmieren.', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 2.3333333333333335, 'completion_tokens': 6, 'completion_tokens_after_first_per_sec': 106.06729752831038, 'completion_tokens_after_first_per_sec_first_ten': 204.92722183833433, 'completion_tokens_per_sec': 26.32497272023831, 'end_time': 1731535339.9997504, 'is_last_response': True, 'prompt_tokens': 50, 'start_time': 1731535339.7539687, 'time_to_first_token': 0.19864177703857422, 'total_latency': 0.22792046410696848, 'total_tokens': 56, 'total_tokens_per_sec': 245.6997453888909}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731535339}, id='dfe0bee6-b297-472e-ac9d-29906d162dcb')"
]
},
"execution_count": 5,
@ -243,17 +247,24 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Yer lookin' fer some info on owls, eh? Alright then, matey, settle yerself down with a pint o' grog and listen close.\n",
"Yer lookin' fer some knowledge about owls, eh? Alright then, matey, settle yerself down with a pint o' grog and listen close. \n",
"\n",
"Owls be nocturnal birds o' prey, meanin' they do most o' their huntin' at night. They got big, round eyes that be perfect fer seein' in the dark, like a trusty lantern on a dark sea. Their ears be sharp as a cutlass, too, helpin' 'em pinpoint the slightest sound o' a scurvy rodent scurryin' through the underbrush.\n",
"Owls be a fascinatin' lot, with their big round eyes and silent wings. They be birds o' prey, which means they hunt other creatures fer food. There be over 220 species o' owls, rangin' in size from the tiny Elf Owl (which be smaller than a parrot) to the Great Grey Owl (which be as big as a small eagle).\n",
"\n",
"These birds be known fer their silent flight, like a ghost ship sailin' through the night. Their feathers be special, with a soft, fringed edge that helps 'em sneak up on their prey. And when they strike, it be swift and deadly, like a pirate's sword.\n",
"One o' the most interestin' things about owls be their eyes. They be huge, with some species havin' eyes that be as big as their brains! This lets 'em see in the dark, which be perfect fer nocturnal huntin'. They also have special feathers on their faces that help 'em hear better, and their ears be specially designed to pinpoint sounds.\n",
"\n",
"Owls be found all over the world, from the frozen tundras o' the north to the scorching deserts o' the south. They come in all shapes and sizes, from the tiny elf owl to the great grey owl, which be as big as a small dog.\n",
"Owls be known fer their silent flight, which be due to the special shape o' their wings. They be able to fly without makin' a sound, which be perfect fer sneakin' up on prey. They also be very agile, with some species able to fly through tight spaces and make sharp turns.\n",
"\n",
"Now, I know what ye be thinkin', \"Pirate, what about their hootin'?\" Aye, owls be famous fer their hoots, which be a form o' communication. They use different hoots to warn off predators, attract a mate, or even just to say, \"Shiver me timbers, I be happy to be alive!\"\n",
"Some o' the most common species o' owls include:\n",
"\n",
"So there ye have it, me hearty. Owls be fascinatin' creatures, and I hope ye found this info as interestin' as a chest overflowin' with gold doubloons. Fair winds and following seas!"
"* Barn Owl: A medium-sized owl with a heart-shaped face and a screechin' call.\n",
"* Tawny Owl: A large owl with a distinctive hootin' call and a reddish-brown plumage.\n",
"* Great Horned Owl: A big owl with ear tufts and a deep hootin' call.\n",
"* Snowy Owl: A white owl with a round face and a soft, hootin' call.\n",
"\n",
"Owls be found all over the world, in a variety o' habitats, from forests to deserts. They be an important part o' many ecosystems, helpin' to keep populations o' small mammals and birds under control.\n",
"\n",
"So there ye have it, matey! Owls be amazin' creatures, with their big eyes, silent wings, and sharp talons. Now go forth and spread the word about these fascinatin' birds!"
]
}
],
@ -283,7 +294,7 @@
{
"data": {
"text/plain": [
"AIMessage(content='The capital of France is Paris.', response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 13, 'completion_tokens': 8, 'completion_tokens_after_first_per_sec': 86.00726488715989, 'completion_tokens_after_first_per_sec_first_ten': 326.92555640828857, 'completion_tokens_per_sec': 21.74539360394493, 'end_time': 1726159287.9987085, 'is_last_response': True, 'prompt_tokens': 43, 'start_time': 1726159287.5738964, 'time_to_first_token': 0.34342360496520996, 'total_latency': 0.36789400760944074, 'total_tokens': 51, 'total_tokens_per_sec': 138.62688422514893}, 'model_name': 'Meta-Llama-3.1-405B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1726159287}, id='9b4ef015-50a2-434b-b980-29f8aa90c3e8')"
"AIMessage(content='The capital of France is Paris.', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 1, 'completion_tokens': 7, 'completion_tokens_after_first_per_sec': 442.126212227688, 'completion_tokens_after_first_per_sec_first_ten': 0, 'completion_tokens_per_sec': 46.28540439646366, 'end_time': 1731535343.0321083, 'is_last_response': True, 'prompt_tokens': 42, 'start_time': 1731535342.8808727, 'time_to_first_token': 0.137664794921875, 'total_latency': 0.15123558044433594, 'total_tokens': 49, 'total_tokens_per_sec': 323.99783077524563}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731535342}, id='c4b8c714-df38-4206-9aa8-fc8231f7275a')"
]
},
"execution_count": 7,
@ -321,7 +332,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Quantum computers use quantum bits (qubits) to process vast amounts of data simultaneously, leveraging quantum mechanics to solve complex problems exponentially faster than classical computers."
"Quantum computers use quantum bits (qubits) to process info, leveraging superposition and entanglement to perform calculations exponentially faster than classical computers for certain complex problems."
]
}
],
@ -340,13 +351,202 @@
" print(chunk.content, end=\"\", flush=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tool calling"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime\n",
"\n",
"from langchain_core.messages import HumanMessage, ToolMessage\n",
"from langchain_core.tools import tool\n",
"\n",
"\n",
"@tool\n",
"def get_time(kind: str = \"both\") -> str:\n",
" \"\"\"Returns current date, current time or both.\n",
" Args:\n",
" kind(str): date, time or both\n",
" Returns:\n",
" str: current date, current time or both\n",
" \"\"\"\n",
" if kind == \"date\":\n",
" date = datetime.now().strftime(\"%m/%d/%Y\")\n",
" return f\"Current date: {date}\"\n",
" elif kind == \"time\":\n",
" time = datetime.now().strftime(\"%H:%M:%S\")\n",
" return f\"Current time: {time}\"\n",
" else:\n",
" date = datetime.now().strftime(\"%m/%d/%Y\")\n",
" time = datetime.now().strftime(\"%H:%M:%S\")\n",
" return f\"Current date: {date}, Current time: {time}\"\n",
"\n",
"\n",
"tools = [get_time]\n",
"\n",
"\n",
"def invoke_tools(tool_calls, messages):\n",
" available_functions = {tool.name: tool for tool in tools}\n",
" for tool_call in tool_calls:\n",
" selected_tool = available_functions[tool_call[\"name\"]]\n",
" tool_output = selected_tool.invoke(tool_call[\"args\"])\n",
" print(f\"Tool output: {tool_output}\")\n",
" messages.append(ToolMessage(tool_output, tool_call_id=tool_call[\"id\"]))\n",
" return messages"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"llm_with_tools = llm.bind_tools(tools=tools)\n",
"messages = [\n",
" HumanMessage(\n",
" content=\"I need to schedule a meeting for two weeks from today. Can you tell me the exact date of the meeting?\"\n",
" )\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Intermediate model response: [{'name': 'get_time', 'args': {'kind': 'date'}, 'id': 'call_7352ce7a18e24a7c9d', 'type': 'tool_call'}]\n",
"Tool output: Current date: 11/13/2024\n",
"final response: The meeting should be scheduled for two weeks from November 13th, 2024.\n"
]
}
],
"source": [
"response = llm_with_tools.invoke(messages)\n",
"while len(response.tool_calls) > 0:\n",
" print(f\"Intermediate model response: {response.tool_calls}\")\n",
" messages.append(response)\n",
" messages = invoke_tools(response.tool_calls, messages)\n",
" response = llm_with_tools.invoke(messages)\n",
"\n",
"print(f\"final response: {response.content}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Structured Outputs"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Joke(setup='Why did the cat join a band?', punchline='Because it wanted to be the purr-cussionist!')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from pydantic import BaseModel, Field\n",
"\n",
"\n",
"class Joke(BaseModel):\n",
" \"\"\"Joke to tell user.\"\"\"\n",
"\n",
" setup: str = Field(description=\"The setup of the joke\")\n",
" punchline: str = Field(description=\"The punchline to the joke\")\n",
"\n",
"\n",
"structured_llm = llm.with_structured_output(Joke)\n",
"\n",
"structured_llm.invoke(\"Tell me a joke about cats\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Input Image"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"multimodal_llm = ChatSambaNovaCloud(\n",
" model=\"Llama-3.2-11B-Vision-Instruct\",\n",
" max_tokens=1024,\n",
" temperature=0.7,\n",
" top_k=1,\n",
" top_p=0.01,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The weather in this image is a serene and peaceful atmosphere, with a blue sky and white clouds, suggesting a pleasant day with mild temperatures and gentle breezes.\n"
]
}
],
"source": [
"import base64\n",
"\n",
"import httpx\n",
"\n",
"image_url = (\n",
" \"https://images.pexels.com/photos/147411/italy-mountains-dawn-daybreak-147411.jpeg\"\n",
")\n",
"image_data = base64.b64encode(httpx.get(image_url).content).decode(\"utf-8\")\n",
"\n",
"message = HumanMessage(\n",
" content=[\n",
" {\"type\": \"text\", \"text\": \"describe the weather in this image in 1 sentence\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\"url\": f\"data:image/jpeg;base64,{image_data}\"},\n",
" },\n",
" ],\n",
")\n",
"response = multimodal_llm.invoke([message])\n",
"print(response.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## API reference\n",
"\n",
"For detailed documentation of all ChatSambaNovaCloud features and configurations head to the API reference: https://api.python.langchain.com/en/latest/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html"
"For detailed documentation of all ChatSambaNovaCloud features and configurations head to the API reference: https://python.langchain.com/api_reference/community/chat_models/langchain_community.chat_models.sambanova.ChatSambaNovaCloud.html"
]
}
],
@ -366,7 +566,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.19"
"version": "3.9.20"
}
},
"nbformat": 4,

View File

@ -1,10 +1,25 @@
import json
from typing import Any, Dict, Iterator, List, Optional, Tuple
from operator import itemgetter
from typing import (
Any,
Callable,
Dict,
Iterator,
List,
Literal,
Optional,
Sequence,
Tuple,
Type,
Union,
cast,
)
import requests
from langchain_core.callbacks import (
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
BaseChatModel,
generate_from_stream,
@ -19,9 +34,24 @@ from langchain_core.messages import (
SystemMessage,
ToolMessage,
)
from langchain_core.output_parsers import (
JsonOutputParser,
PydanticOutputParser,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
JsonOutputKeyToolsParser,
PydanticToolsParser,
make_invalid_tool_call,
parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env
from pydantic import Field, SecretStr
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_core.utils.pydantic import is_basemodel_subclass
from pydantic import BaseModel, Field, SecretStr
from requests import Response
@ -35,6 +65,7 @@ def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
Returns:
messages_dict: role / content dict
"""
message_dict: Dict[str, Any] = {}
if isinstance(message, ChatMessage):
message_dict = {"role": message.role, "content": message.content}
elif isinstance(message, SystemMessage):
@ -43,8 +74,16 @@ def _convert_message_to_dict(message: BaseMessage) -> Dict[str, Any]:
message_dict = {"role": "user", "content": message.content}
elif isinstance(message, AIMessage):
message_dict = {"role": "assistant", "content": message.content}
if "tool_calls" in message.additional_kwargs:
message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
if message_dict["content"] == "":
message_dict["content"] = None
elif isinstance(message, ToolMessage):
message_dict = {"role": "tool", "content": message.content}
message_dict = {
"role": "tool",
"content": message.content,
"tool_call_id": message.tool_call_id,
}
else:
raise TypeError(f"Got unknown type {message}")
return message_dict
@ -64,14 +103,18 @@ def _create_message_dicts(messages: List[BaseMessage]) -> List[Dict[str, Any]]:
return message_dicts
def _is_pydantic_class(obj: Any) -> bool:
return isinstance(obj, type) and is_basemodel_subclass(obj)
class ChatSambaNovaCloud(BaseChatModel):
"""
SambaNova Cloud chat model.
Setup:
To use, you should have the environment variables:
``SAMBANOVA_URL`` set with your SambaNova Cloud URL.
``SAMBANOVA_API_KEY`` set with your SambaNova Cloud API Key.
`SAMBANOVA_URL` set with your SambaNova Cloud URL.
`SAMBANOVA_API_KEY` set with your SambaNova Cloud API Key.
http://cloud.sambanova.ai/
Example:
.. code-block:: python
@ -123,8 +166,10 @@ class ChatSambaNovaCloud(BaseChatModel):
top_k = model top k,
stream_options = include usage to get generation metrics
)
Invoke:
.. code-block:: python
messages = [
SystemMessage(content="your are an AI assistant."),
HumanMessage(content="tell me a joke."),
@ -134,26 +179,78 @@ class ChatSambaNovaCloud(BaseChatModel):
Stream:
.. code-block:: python
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
for chunk in chat.stream(messages):
print(chunk.content, end="", flush=True)
Async:
.. code-block:: python
response = chat.ainvoke(messages)
await response
response = chat.ainvoke(messages)
await response
Tool calling:
.. code-block:: python
from pydantic import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(
...,
description="The city and state, e.g. Los Angeles, CA"
)
llm_with_tools = llm.bind_tools([GetWeather, GetPopulation])
ai_msg = llm_with_tools.invoke("Should I bring my umbrella today in LA?")
ai_msg.tool_calls
.. code-block:: none
[
{
'name': 'GetWeather',
'args': {'location': 'Los Angeles, CA'},
'id': 'call_adf61180ea2b4d228a'
}
]
Structured output:
.. code-block:: python
from typing import Optional
from pydantic import BaseModel, Field
class Joke(BaseModel):
'''Joke to tell user.'''
setup: str = Field(description="The setup of the joke")
punchline: str = Field(description="The punchline to the joke")
structured_model = llm.with_structured_output(Joke)
structured_model.invoke("Tell me a joke about cats")
.. code-block:: python
Joke(setup="Why did the cat join a band?",
punchline="Because it wanted to be the purr-cussionist!")
See `ChatSambanovaCloud.with_structured_output()` for more.
Token usage:
.. code-block:: python
response = chat.invoke(messages)
print(response.response_metadata["usage"]["prompt_tokens"]
print(response.response_metadata["usage"]["total_tokens"]
response = chat.invoke(messages)
print(response.response_metadata["usage"]["prompt_tokens"]
print(response.response_metadata["usage"]["total_tokens"]
Response metadata
.. code-block:: python
response = chat.invoke(messages)
print(response.response_metadata)
response = chat.invoke(messages)
print(response.response_metadata)
"""
sambanova_url: str = Field(default="")
@ -180,9 +277,12 @@ class ChatSambaNovaCloud(BaseChatModel):
top_k: Optional[int] = Field(default=None)
"""model top k"""
stream_options: dict = Field(default={"include_usage": True})
stream_options: Dict[str, Any] = Field(default={"include_usage": True})
"""stream options, include usage to get generation metrics"""
additional_headers: Dict[str, Any] = Field(default={})
"""Additional headers to sent in request"""
class Config:
populate_by_name = True
@ -230,36 +330,409 @@ class ChatSambaNovaCloud(BaseChatModel):
)
super().__init__(**kwargs)
def bind_tools(
self,
tools: Sequence[Union[Dict[str, Any], Type[Any], Callable[..., Any], BaseTool]],
*,
tool_choice: Optional[Union[Dict[str, Any], bool, str]] = None,
parallel_tool_calls: Optional[bool] = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, BaseMessage]:
"""Bind tool-like objects to this chat model
tool_choice: does not currently support "any", choice like
should be one of ["auto", "none", "required"]
"""
formatted_tools = [convert_to_openai_tool(tool) for tool in tools]
if tool_choice:
if isinstance(tool_choice, str):
# tool_choice is a tool/function name
if tool_choice not in ("auto", "none", "required"):
tool_choice = "auto"
elif isinstance(tool_choice, bool):
if tool_choice:
tool_choice = "required"
elif isinstance(tool_choice, dict):
raise ValueError(
"tool_choice must be one of ['auto', 'none', 'required']"
)
else:
raise ValueError(
f"Unrecognized tool_choice type. Expected str, bool"
f"Received: {tool_choice}"
)
else:
tool_choice = "auto"
kwargs["tool_choice"] = tool_choice
kwargs["parallel_tool_calls"] = parallel_tool_calls
return super().bind(tools=formatted_tools, **kwargs)
def with_structured_output(
self,
schema: Optional[Union[Dict[str, Any], Type[BaseModel]]] = None,
*,
method: Literal[
"function_calling", "json_mode", "json_schema"
] = "function_calling",
include_raw: bool = False,
**kwargs: Any,
) -> Runnable[LanguageModelInput, Union[Dict[str, Any], BaseModel]]:
"""Model wrapper that returns outputs formatted to match the given schema.
Args:
schema:
The output schema. Can be passed in as:
- an OpenAI function/tool schema,
- a JSON Schema,
- a TypedDict class,
- or a Pydantic.BaseModel class.
If `schema` is a Pydantic class then the model output will be a
Pydantic instance of that class, and the model-generated fields will be
validated by the Pydantic class. Otherwise the model output will be a
dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
for more on how to properly specify types and descriptions of
schema fields when specifying a Pydantic or TypedDict class.
method:
The method for steering model generation, either "function_calling"
"json_mode" or "json_schema".
If "function_calling" then the schema will be converted
to an OpenAI function and the returned model will make use of the
function-calling API. If "json_mode" or "json_schema" then OpenAI's
JSON mode will be used.
Note that if using "json_mode" or "json_schema" then you must include instructions
for formatting the output into the desired schema into the model call.
include_raw:
If False then only the parsed structured output is returned. If
an error occurs during model output parsing it will be raised. If True
then both the raw model response (a BaseMessage) and the parsed model
response will be returned. If an error occurs during output parsing it
will be caught and returned as well. The final output is always a dict
with keys "raw", "parsed", and "parsing_error".
Returns:
A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
If `include_raw` is False and `schema` is a Pydantic class, Runnable outputs
an instance of `schema` (i.e., a Pydantic object).
Otherwise, if `include_raw` is False then Runnable outputs a dict.
If `include_raw` is True, then Runnable outputs a dict with keys:
- `"raw"`: BaseMessage
- `"parsed"`: None if there was a parsing error, otherwise the type depends on the `schema` as described above.
- `"parsing_error"`: Optional[BaseException]
Example: schema=Pydantic class, method="function_calling", include_raw=False:
.. code-block:: python
from typing import Optional
from langchain_community.chat_models import ChatSambaNovaCloud
from pydantic import BaseModel, Field
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str = Field(
description="A justification for the answer."
)
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> AnswerWithJustification(
# answer='They weigh the same',
# justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same.'
# )
Example: schema=Pydantic class, method="function_calling", include_raw=True:
.. code-block:: python
from langchain_community.chat_models import ChatSambaNovaCloud
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: str
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification, include_raw=True
)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'function': {'arguments': '{"answer": "They weigh the same.", "justification": "A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount."}', 'name': 'AnswerWithJustification'}, 'id': 'call_17a431fc6a4240e1bd', 'type': 'function'}]}, response_metadata={'finish_reason': 'tool_calls', 'usage': {'acceptance_rate': 5, 'completion_tokens': 53, 'completion_tokens_after_first_per_sec': 343.7964936837758, 'completion_tokens_after_first_per_sec_first_ten': 439.1205661878638, 'completion_tokens_per_sec': 162.8511306784833, 'end_time': 1731527851.0698032, 'is_last_response': True, 'prompt_tokens': 213, 'start_time': 1731527850.7137961, 'time_to_first_token': 0.20475482940673828, 'total_latency': 0.32545061111450196, 'total_tokens': 266, 'total_tokens_per_sec': 817.3283162354066}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731527850}, id='95667eaf-447f-4b53-bb6e-b6e1094ded88', tool_calls=[{'name': 'AnswerWithJustification', 'args': {'answer': 'They weigh the same.', 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'}, 'id': 'call_17a431fc6a4240e1bd', 'type': 'tool_call'}]),
# 'parsed': AnswerWithJustification(answer='They weigh the same.', justification='A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'),
# 'parsing_error': None
# }
Example: schema=TypedDict class, method="function_calling", include_raw=False:
.. code-block:: python
# IMPORTANT: If you are using Python <=3.8, you need to import Annotated
# from typing_extensions, not from typing.
from typing_extensions import Annotated, TypedDict
from langchain_community.chat_models import ChatSambaNovaCloud
class AnswerWithJustification(TypedDict):
'''An answer to the user question along with justification for the answer.'''
answer: str
justification: Annotated[
Optional[str], None, "A justification for the answer."
]
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'
# }
Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
.. code-block:: python
from langchain_community.chat_models import ChatSambaNovaCloud
oai_schema = {
'name': 'AnswerWithJustification',
'description': 'An answer to the user question along with justification for the answer.',
'parameters': {
'type': 'object',
'properties': {
'answer': {'type': 'string'},
'justification': {'description': 'A justification for the answer.', 'type': 'string'}
},
'required': ['answer']
}
}
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(oai_schema)
structured_llm.invoke(
"What weighs more a pound of bricks or a pound of feathers"
)
# -> {
# 'answer': 'They weigh the same',
# 'justification': 'A pound is a unit of weight or mass, so one pound of bricks and one pound of feathers both weigh the same amount.'
# }
Example: schema=Pydantic class, method="json_mode", include_raw=True:
.. code-block::
from langchain_community.chat_models import ChatSambaNovaCloud
from pydantic import BaseModel
class AnswerWithJustification(BaseModel):
answer: str
justification: str
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(
AnswerWithJustification,
method="json_mode",
include_raw=True
)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 5.3125, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 292.65701089829776, 'completion_tokens_after_first_per_sec_first_ten': 346.43324678555325, 'completion_tokens_per_sec': 200.012158915008, 'end_time': 1731528071.1708555, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528070.737394, 'time_to_first_token': 0.16693782806396484, 'total_latency': 0.3949759876026827, 'total_tokens': 149, 'total_tokens_per_sec': 377.2381225105847}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528070}, id='83208297-3eb9-4021-a856-ca78a15758df'),
# 'parsed': AnswerWithJustification(answer='They are the same weight', justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'),
# 'parsing_error': None
# }
Example: schema=None, method="json_mode", include_raw=True:
.. code-block::
from langchain_community.chat_models import ChatSambaNovaCloud
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 4.722222222222222, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 357.1315485254867, 'completion_tokens_after_first_per_sec_first_ten': 416.83279609305305, 'completion_tokens_per_sec': 240.92819585198137, 'end_time': 1731528164.8474727, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528164.4906917, 'time_to_first_token': 0.13837409019470215, 'total_latency': 0.3278985247892492, 'total_tokens': 149, 'total_tokens_per_sec': 454.4088757208256}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528164}, id='15261eaf-8a25-42ef-8ed5-f63d8bf5b1b0'),
# 'parsed': {
# 'answer': 'They are the same weight',
# 'justification': 'A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'},
# },
# 'parsing_error': None
# }
Example: schema=None, method="json_schema", include_raw=True:
.. code-block::
from langchain_community.chat_models import ChatSambaNovaCloud
class AnswerWithJustification(BaseModel):
answer: str
justification: str
llm = ChatSambaNovaCloud(model="Meta-Llama-3.1-70B-Instruct", temperature=0)
structured_llm = llm.with_structured_output(AnswerWithJustification, method="json_schema", include_raw=True)
structured_llm.invoke(
"Answer the following question. "
"Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
"What's heavier a pound of bricks or a pound of feathers?"
)
# -> {
# 'raw': AIMessage(content='{\n "answer": "They are the same weight",\n "justification": "A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities."\n}', additional_kwargs={}, response_metadata={'finish_reason': 'stop', 'usage': {'acceptance_rate': 5.3125, 'completion_tokens': 79, 'completion_tokens_after_first_per_sec': 292.65701089829776, 'completion_tokens_after_first_per_sec_first_ten': 346.43324678555325, 'completion_tokens_per_sec': 200.012158915008, 'end_time': 1731528071.1708555, 'is_last_response': True, 'prompt_tokens': 70, 'start_time': 1731528070.737394, 'time_to_first_token': 0.16693782806396484, 'total_latency': 0.3949759876026827, 'total_tokens': 149, 'total_tokens_per_sec': 377.2381225105847}, 'model_name': 'Meta-Llama-3.1-70B-Instruct', 'system_fingerprint': 'fastcoe', 'created': 1731528070}, id='83208297-3eb9-4021-a856-ca78a15758df'),
# 'parsed': AnswerWithJustification(answer='They are the same weight', justification='A pound is a unit of weight or mass, so a pound of bricks and a pound of feathers both weigh the same amount, one pound. The difference is in their density and volume. A pound of feathers would take up more space than a pound of bricks due to the difference in their densities.'),
# 'parsing_error': None
# }
""" # noqa: E501
if kwargs is not None:
raise ValueError(f"Received unsupported arguments {kwargs}")
is_pydantic_schema = _is_pydantic_class(schema)
if method == "function_calling":
if schema is None:
raise ValueError(
"`schema` must be specified when method is `function_calling`. "
"Received None."
)
tool_name = convert_to_openai_tool(schema)["function"]["name"]
llm = self.bind_tools([schema], tool_choice=tool_name)
if is_pydantic_schema:
output_parser: OutputParserLike[Any] = PydanticToolsParser(
tools=[schema],
first_tool_only=True,
)
else:
output_parser = JsonOutputKeyToolsParser(
key_name=tool_name, first_tool_only=True
)
elif method == "json_mode":
llm = self
# TODO bind response format when json mode available by API
# llm = self.bind(response_format={"type": "json_object"})
if is_pydantic_schema:
schema = cast(Type[BaseModel], schema)
output_parser = PydanticOutputParser(pydantic_object=schema)
else:
output_parser = JsonOutputParser()
elif method == "json_schema":
if schema is None:
raise ValueError(
"`schema` must be specified when method is not `json_mode`. "
"Received None."
)
llm = self
# TODO bind response format when json schema available by API,
# update example
# llm = self.bind(
# response_format={"type": "json_object", "json_schema": schema}
# )
if is_pydantic_schema:
schema = cast(Type[BaseModel], schema)
output_parser = PydanticOutputParser(pydantic_object=schema)
else:
output_parser = JsonOutputParser()
else:
raise ValueError(
f"Unrecognized method argument. Expected one of `function_calling` or "
f"`json_mode`. Received: `{method}`"
)
if include_raw:
parser_assign = RunnablePassthrough.assign(
parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
)
parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
parser_with_fallback = parser_assign.with_fallbacks(
[parser_none], exception_key="parsing_error"
)
return RunnableMap(raw=llm) | parser_with_fallback
else:
return llm | output_parser
def _handle_request(
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
) -> Dict[str, Any]:
self,
messages_dicts: List[Dict[str, Any]],
stop: Optional[List[str]] = None,
streaming: bool = False,
**kwargs: Any,
) -> Response:
"""
Performs a post request to the LLM API.
Args:
messages_dicts: List of role / content dicts to use as input.
stop: list of stop tokens
streaming: wether to do a streaming call
Returns:
An iterator of response dicts.
"""
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
}
if streaming:
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"stream": True,
"stream_options": self.stream_options,
**kwargs,
}
else:
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
**kwargs,
}
http_session = requests.Session()
response = http_session.post(
self.sambanova_url,
headers={
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
"Content-Type": "application/json",
**self.additional_headers,
},
json=data,
stream=streaming,
)
if response.status_code != 200:
raise RuntimeError(
@ -267,27 +740,78 @@ class ChatSambaNovaCloud(BaseChatModel):
f"{response.status_code}.",
f"{response.text}.",
)
response_dict = response.json()
if response_dict.get("error"):
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.",
f"{response_dict}.",
)
return response_dict
return response
def _handle_streaming_request(
self, messages_dicts: List[Dict], stop: Optional[List[str]] = None
) -> Iterator[Dict]:
def _process_response(self, response: Response) -> AIMessage:
"""
Performs an streaming post request to the LLM API.
Process a non streaming response from the api
Args:
messages_dicts: List of role / content dicts to use as input.
stop: list of stop tokens
response: A request Response object
Returns
generation: an AIMessage with model generation
"""
try:
response_dict = response.json()
if response_dict.get("error"):
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}.",
f"{response_dict}.",
)
except Exception as e:
raise RuntimeError(
f"Sambanova /complete call failed couldn't get JSON response {e}"
f"response: {response.text}"
)
content = response_dict["choices"][0]["message"].get("content", "")
if content is None:
content = ""
additional_kwargs: Dict[str, Any] = {}
tool_calls = []
invalid_tool_calls = []
raw_tool_calls = response_dict["choices"][0]["message"].get("tool_calls")
if raw_tool_calls:
additional_kwargs["tool_calls"] = raw_tool_calls
for raw_tool_call in raw_tool_calls:
if isinstance(raw_tool_call["function"]["arguments"], dict):
raw_tool_call["function"]["arguments"] = json.dumps(
raw_tool_call["function"].get("arguments", {})
)
try:
tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
except Exception as e:
invalid_tool_calls.append(
make_invalid_tool_call(raw_tool_call, str(e))
)
message = AIMessage(
content=content,
additional_kwargs=additional_kwargs,
tool_calls=tool_calls,
invalid_tool_calls=invalid_tool_calls,
response_metadata={
"finish_reason": response_dict["choices"][0]["finish_reason"],
"usage": response_dict.get("usage"),
"model_name": response_dict["model"],
"system_fingerprint": response_dict["system_fingerprint"],
"created": response_dict["created"],
},
id=response_dict["id"],
)
return message
def _process_stream_response(
self, response: Response
) -> Iterator[BaseMessageChunk]:
"""
Process a streaming response from the api
Args:
response: An iterable request Response object
Yields:
An iterator of response dicts.
generation: an AIMessageChunk with model partial generation
"""
try:
import sseclient
@ -296,37 +820,9 @@ class ChatSambaNovaCloud(BaseChatModel):
"could not import sseclient library"
"Please install it with `pip install sseclient-py`."
)
data = {
"messages": messages_dicts,
"max_tokens": self.max_tokens,
"stop": stop,
"model": self.model,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"stream": True,
"stream_options": self.stream_options,
}
http_session = requests.Session()
response = http_session.post(
self.sambanova_url,
headers={
"Authorization": f"Bearer {self.sambanova_api_key.get_secret_value()}",
"Content-Type": "application/json",
},
json=data,
stream=True,
)
client = sseclient.SSEClient(response)
if response.status_code != 200:
raise RuntimeError(
f"Sambanova /complete call failed with status code "
f"{response.status_code}."
f"{response.text}."
)
for event in client.events():
if event.event == "error_event":
raise RuntimeError(
@ -353,7 +849,31 @@ class ChatSambaNovaCloud(BaseChatModel):
f"{response.status_code}."
f"{event.data}."
)
yield data
if len(data["choices"]) > 0:
finish_reason = data["choices"][0].get("finish_reason")
content = data["choices"][0]["delta"]["content"]
id = data["id"]
chunk = AIMessageChunk(
content=content, id=id, additional_kwargs={}
)
else:
content = ""
id = data["id"]
metadata = {
"finish_reason": finish_reason,
"usage": data.get("usage"),
"model_name": data["model"],
"system_fingerprint": data["system_fingerprint"],
"created": data["created"],
}
chunk = AIMessageChunk(
content=content,
id=id,
response_metadata=metadata,
additional_kwargs={},
)
yield chunk
except Exception as e:
raise RuntimeError(
f"Error getting content chunk raw streamed response: {e}"
@ -390,21 +910,14 @@ class ChatSambaNovaCloud(BaseChatModel):
if stream_iter:
return generate_from_stream(stream_iter)
messages_dicts = _create_message_dicts(messages)
response = self._handle_request(messages_dicts, stop)
message = AIMessage(
content=response["choices"][0]["message"]["content"],
additional_kwargs={},
response_metadata={
"finish_reason": response["choices"][0]["finish_reason"],
"usage": response.get("usage"),
"model_name": response["model"],
"system_fingerprint": response["system_fingerprint"],
"created": response["created"],
response = self._handle_request(messages_dicts, stop, streaming=False, **kwargs)
message = self._process_response(response)
generation = ChatGeneration(
message=message,
generation_info={
"finish_reason": message.response_metadata["finish_reason"]
},
id=response["id"],
)
generation = ChatGeneration(message=message)
return ChatResult(generations=[generation])
def _stream(
@ -431,34 +944,9 @@ class ChatSambaNovaCloud(BaseChatModel):
chunk: ChatGenerationChunk with model partial generation
"""
messages_dicts = _create_message_dicts(messages)
finish_reason = None
for partial_response in self._handle_streaming_request(messages_dicts, stop):
if len(partial_response["choices"]) > 0:
finish_reason = partial_response["choices"][0].get("finish_reason")
content = partial_response["choices"][0]["delta"]["content"]
id = partial_response["id"]
chunk = ChatGenerationChunk(
message=AIMessageChunk(content=content, id=id, additional_kwargs={})
)
else:
content = ""
id = partial_response["id"]
metadata = {
"finish_reason": finish_reason,
"usage": partial_response.get("usage"),
"model_name": partial_response["model"],
"system_fingerprint": partial_response["system_fingerprint"],
"created": partial_response["created"],
}
chunk = ChatGenerationChunk(
message=AIMessageChunk(
content=content,
id=id,
response_metadata=metadata,
additional_kwargs={},
)
)
response = self._handle_request(messages_dicts, stop, streaming=True, **kwargs)
for ai_message_chunk in self._process_stream_response(response):
chunk = ChatGenerationChunk(message=ai_message_chunk)
if run_manager:
run_manager.on_llm_new_token(chunk.text, chunk=chunk)
yield chunk
@ -617,10 +1105,10 @@ class ChatSambaStudio(BaseChatModel):
process_prompt: Optional[bool] = Field(default=True)
"""whether process prompt (for CoE generic v1 and v2 endpoints)"""
stream_options: dict = Field(default={"include_usage": True})
stream_options: Dict[str, Any] = Field(default={"include_usage": True})
"""stream options, include usage to get generation metrics"""
special_tokens: dict = Field(
special_tokens: Dict[str, Any] = Field(
default={
"start": "<|begin_of_text|>",
"start_role": "<|begin_of_text|><|start_header_id|>{role}<|end_header_id|>",