mirror of
https://github.com/hwchase17/langchain.git
synced 2025-08-11 05:45:01 +00:00
Merge branch 'langchain-ai:master' into master
This commit is contained in:
commit
ad86d8f066
@ -173,7 +173,7 @@
|
||||
"source": [
|
||||
"## Indexing and Retrieval\n",
|
||||
"\n",
|
||||
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/).\n",
|
||||
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our [RAG tutorials](/docs/tutorials/rag).\n",
|
||||
"\n",
|
||||
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
|
||||
]
|
||||
|
@ -322,12 +322,12 @@ const FEATURE_TABLES = {
|
||||
{
|
||||
name: "VertexAILLM",
|
||||
link: "google_vertexai",
|
||||
package: "langchain-google_vertexai",
|
||||
package: "langchain-google-vertexai",
|
||||
apiLink: "https://python.langchain.com/api_reference/google_vertexai/llms/langchain_google_vertexai.llms.VertexAI.html"
|
||||
},
|
||||
{
|
||||
name: "NVIDIA",
|
||||
link: "NVIDIA",
|
||||
link: "nvidia_ai_endpoints",
|
||||
package: "langchain-nvidia",
|
||||
apiLink: "https://python.langchain.com/api_reference/nvidia_ai_endpoints/llm/langchain_nvidia_ai_endpoints.llm.NVIDIA.html"
|
||||
},
|
||||
|
@ -36,6 +36,8 @@ class FakeMessagesListChatModel(BaseChatModel):
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> ChatResult:
|
||||
if self.sleep is not None:
|
||||
time.sleep(self.sleep)
|
||||
response = self.responses[self.i]
|
||||
if self.i < len(self.responses) - 1:
|
||||
self.i += 1
|
||||
@ -61,9 +63,9 @@ class FakeListChatModel(SimpleChatModel):
|
||||
"""List of responses to **cycle** through in order."""
|
||||
sleep: Optional[float] = None
|
||||
i: int = 0
|
||||
"""List of responses to **cycle** through in order."""
|
||||
error_on_chunk_number: Optional[int] = None
|
||||
"""Internally incremented after every model invocation."""
|
||||
error_on_chunk_number: Optional[int] = None
|
||||
"""If set, raise an error on the specified chunk number during streaming."""
|
||||
|
||||
@property
|
||||
@override
|
||||
@ -79,6 +81,8 @@ class FakeListChatModel(SimpleChatModel):
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""First try to lookup in queries, else return 'foo' or 'bar'."""
|
||||
if self.sleep is not None:
|
||||
time.sleep(self.sleep)
|
||||
response = self.responses[self.i]
|
||||
if self.i < len(self.responses) - 1:
|
||||
self.i += 1
|
||||
|
@ -146,13 +146,12 @@ class InMemoryRateLimiter(BaseRateLimiter):
|
||||
|
||||
Args:
|
||||
requests_per_second: The number of tokens to add per second to the bucket.
|
||||
Must be at least 1. The tokens represent "credit" that can be used
|
||||
to make requests.
|
||||
The tokens represent "credit" that can be used to make requests.
|
||||
check_every_n_seconds: check whether the tokens are available
|
||||
every this many seconds. Can be a float to represent
|
||||
fractions of a second.
|
||||
max_bucket_size: The maximum number of tokens that can be in the bucket.
|
||||
This is used to prevent bursts of requests.
|
||||
Must be at least 1. Used to prevent bursts of requests.
|
||||
"""
|
||||
# Number of requests that we can make per second.
|
||||
self.requests_per_second = requests_per_second
|
||||
|
@ -150,6 +150,11 @@ def parse_tag(template: str, l_del: str, r_del: str) -> tuple[tuple[str, str], s
|
||||
msg = f"unclosed tag at line {_CURRENT_LINE}"
|
||||
raise ChevronError(msg) from e
|
||||
|
||||
# Check for empty tags
|
||||
if not tag.strip():
|
||||
msg = f"empty tag at line {_CURRENT_LINE}"
|
||||
raise ChevronError(msg)
|
||||
|
||||
# Find the type meaning of the first character
|
||||
tag_type = tag_types.get(tag[0], "variable")
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
"""Tests for verifying that testing utility code works as expected."""
|
||||
|
||||
import time
|
||||
from itertools import cycle
|
||||
from typing import Any, Optional, Union
|
||||
from uuid import UUID
|
||||
@ -9,10 +10,11 @@ from typing_extensions import override
|
||||
from langchain_core.callbacks.base import AsyncCallbackHandler
|
||||
from langchain_core.language_models import (
|
||||
FakeListChatModel,
|
||||
FakeMessagesListChatModel,
|
||||
GenericFakeChatModel,
|
||||
ParrotFakeChatModel,
|
||||
)
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage
|
||||
from langchain_core.messages import AIMessage, AIMessageChunk, BaseMessage, HumanMessage
|
||||
from langchain_core.outputs import ChatGenerationChunk, GenerationChunk
|
||||
from tests.unit_tests.stubs import (
|
||||
_any_id_ai_message,
|
||||
@ -230,3 +232,18 @@ def test_fake_list_chat_model_batch() -> None:
|
||||
fake = FakeListChatModel(responses=["a", "b", "c"])
|
||||
resp = fake.batch(["1", "2", "3"])
|
||||
assert resp == expected
|
||||
|
||||
|
||||
def test_fake_messages_list_chat_model_sleep_delay() -> None:
|
||||
sleep_time = 0.1
|
||||
model = FakeMessagesListChatModel(
|
||||
responses=[AIMessage(content="A"), AIMessage(content="B")],
|
||||
sleep=sleep_time,
|
||||
)
|
||||
messages = [HumanMessage(content="C")]
|
||||
|
||||
start = time.time()
|
||||
model.invoke(messages)
|
||||
elapsed = time.time() - start
|
||||
|
||||
assert elapsed >= sleep_time
|
||||
|
@ -2,6 +2,7 @@ from functools import partial
|
||||
from inspect import isclass
|
||||
from typing import Any, Union, cast
|
||||
|
||||
import pytest
|
||||
from pydantic import BaseModel
|
||||
|
||||
from langchain_core.language_models import FakeListChatModel
|
||||
@ -10,6 +11,7 @@ from langchain_core.load.load import loads
|
||||
from langchain_core.messages import HumanMessage
|
||||
from langchain_core.prompts.structured import StructuredPrompt
|
||||
from langchain_core.runnables.base import Runnable, RunnableLambda
|
||||
from langchain_core.utils.mustache import ChevronError
|
||||
from langchain_core.utils.pydantic import is_basemodel_subclass
|
||||
|
||||
|
||||
@ -128,3 +130,8 @@ def test_structured_prompt_template_format() -> None:
|
||||
assert prompt.invoke({"person": {"name": "foo"}}).to_messages() == [
|
||||
HumanMessage("hi foo")
|
||||
]
|
||||
|
||||
|
||||
def test_structured_prompt_template_empty_vars() -> None:
|
||||
with pytest.raises(ChevronError, match="empty tag"):
|
||||
StructuredPrompt([("human", "hi {{}}")], schema={}, template_format="mustache")
|
||||
|
@ -16,7 +16,7 @@ class TestHuggingFaceEndpoint(ChatModelIntegrationTests):
|
||||
@property
|
||||
def chat_model_params(self) -> dict:
|
||||
llm = HuggingFaceEndpoint( # type: ignore[call-arg]
|
||||
repo_id="Qwen/Qwen2.5-72B-Instruct",
|
||||
repo_id="meta-llama/Llama-4-Maverick-17B-128E-Instruct",
|
||||
task="conversational",
|
||||
provider="fireworks-ai",
|
||||
temperature=0,
|
||||
@ -59,12 +59,6 @@ class TestHuggingFaceEndpoint(ChatModelIntegrationTests):
|
||||
model, my_adder_tool=my_adder_tool
|
||||
)
|
||||
|
||||
@pytest.mark.xfail(reason=("Not implemented"))
|
||||
def test_structured_few_shot_examples(
|
||||
self, model: BaseChatModel, my_adder_tool: BaseTool
|
||||
) -> None:
|
||||
super().test_structured_few_shot_examples(model, my_adder_tool=my_adder_tool)
|
||||
|
||||
@property
|
||||
def has_tool_choice(self) -> bool:
|
||||
return False
|
||||
|
Loading…
Reference in New Issue
Block a user