mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-01 19:12:42 +00:00
Add embeddings for LocalAI (#8134)
Description: This PR adds embeddings for LocalAI ( https://github.com/go-skynet/LocalAI ), a self-hosted OpenAI drop-in replacement. As LocalAI can re-use OpenAI clients it is mostly following the lines of the OpenAI embeddings, however when embedding documents, it just uses string instead of sending tokens as sending tokens is best-effort depending on the model being used in LocalAI. Sending tokens is also tricky as token id's can mismatch with the model - so it's safer to just send strings in this case. Partly related to: https://github.com/hwchase17/langchain/issues/5256 Dependencies: No new dependencies Twitter: @mudler_it --------- Signed-off-by: mudler <mudler@localai.io> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
committed by
GitHub
parent
d983046f90
commit
ae28568e2a
@@ -23,6 +23,7 @@ from langchain.embeddings.huggingface import (
|
||||
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
|
||||
from langchain.embeddings.jina import JinaEmbeddings
|
||||
from langchain.embeddings.llamacpp import LlamaCppEmbeddings
|
||||
from langchain.embeddings.localai import LocalAIEmbeddings
|
||||
from langchain.embeddings.minimax import MiniMaxEmbeddings
|
||||
from langchain.embeddings.mlflow_gateway import MlflowAIGatewayEmbeddings
|
||||
from langchain.embeddings.modelscope_hub import ModelScopeEmbeddings
|
||||
@@ -76,6 +77,7 @@ __all__ = [
|
||||
"SpacyEmbeddings",
|
||||
"NLPCloudEmbeddings",
|
||||
"GPT4AllEmbeddings",
|
||||
"LocalAIEmbeddings",
|
||||
]
|
||||
|
||||
|
||||
|
345
libs/langchain/langchain/embeddings/localai.py
Normal file
345
libs/langchain/langchain/embeddings/localai.py
Normal file
@@ -0,0 +1,345 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import warnings
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
List,
|
||||
Literal,
|
||||
Optional,
|
||||
Sequence,
|
||||
Set,
|
||||
Tuple,
|
||||
Union,
|
||||
)
|
||||
|
||||
from pydantic import BaseModel, Extra, Field, root_validator
|
||||
from tenacity import (
|
||||
AsyncRetrying,
|
||||
before_sleep_log,
|
||||
retry,
|
||||
retry_if_exception_type,
|
||||
stop_after_attempt,
|
||||
wait_exponential,
|
||||
)
|
||||
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_dict_or_env, get_pydantic_field_names
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _create_retry_decorator(embeddings: LocalAIEmbeddings) -> Callable[[Any], Any]:
|
||||
import openai
|
||||
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
return retry(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(embeddings.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
retry=(
|
||||
retry_if_exception_type(openai.error.Timeout)
|
||||
| retry_if_exception_type(openai.error.APIError)
|
||||
| retry_if_exception_type(openai.error.APIConnectionError)
|
||||
| retry_if_exception_type(openai.error.RateLimitError)
|
||||
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
|
||||
def _async_retry_decorator(embeddings: LocalAIEmbeddings) -> Any:
|
||||
import openai
|
||||
|
||||
min_seconds = 4
|
||||
max_seconds = 10
|
||||
# Wait 2^x * 1 second between each retry starting with
|
||||
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
|
||||
async_retrying = AsyncRetrying(
|
||||
reraise=True,
|
||||
stop=stop_after_attempt(embeddings.max_retries),
|
||||
wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
|
||||
retry=(
|
||||
retry_if_exception_type(openai.error.Timeout)
|
||||
| retry_if_exception_type(openai.error.APIError)
|
||||
| retry_if_exception_type(openai.error.APIConnectionError)
|
||||
| retry_if_exception_type(openai.error.RateLimitError)
|
||||
| retry_if_exception_type(openai.error.ServiceUnavailableError)
|
||||
),
|
||||
before_sleep=before_sleep_log(logger, logging.WARNING),
|
||||
)
|
||||
|
||||
def wrap(func: Callable) -> Callable:
|
||||
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
|
||||
async for _ in async_retrying:
|
||||
return await func(*args, **kwargs)
|
||||
raise AssertionError("this is unreachable")
|
||||
|
||||
return wrapped_f
|
||||
|
||||
return wrap
|
||||
|
||||
|
||||
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
|
||||
def _check_response(response: dict) -> dict:
|
||||
if any(len(d["embedding"]) == 1 for d in response["data"]):
|
||||
import openai
|
||||
|
||||
raise openai.error.APIError("LocalAI API returned an empty embedding")
|
||||
return response
|
||||
|
||||
|
||||
def embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the embedding call."""
|
||||
retry_decorator = _create_retry_decorator(embeddings)
|
||||
|
||||
@retry_decorator
|
||||
def _embed_with_retry(**kwargs: Any) -> Any:
|
||||
response = embeddings.client.create(**kwargs)
|
||||
return _check_response(response)
|
||||
|
||||
return _embed_with_retry(**kwargs)
|
||||
|
||||
|
||||
async def async_embed_with_retry(embeddings: LocalAIEmbeddings, **kwargs: Any) -> Any:
|
||||
"""Use tenacity to retry the embedding call."""
|
||||
|
||||
@_async_retry_decorator(embeddings)
|
||||
async def _async_embed_with_retry(**kwargs: Any) -> Any:
|
||||
response = await embeddings.client.acreate(**kwargs)
|
||||
return _check_response(response)
|
||||
|
||||
return await _async_embed_with_retry(**kwargs)
|
||||
|
||||
|
||||
class LocalAIEmbeddings(BaseModel, Embeddings):
|
||||
"""LocalAI embedding models.
|
||||
|
||||
To use, you should have the ``openai`` python package installed, and the
|
||||
environment variable ``OPENAI_API_KEY`` set to a random string. You need to
|
||||
specify ``OPENAI_API_BASE`` to point to your LocalAI service endpoint.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.embeddings import LocalAIEmbeddings
|
||||
openai = LocalAIEmbeddings(
|
||||
openai_api_key="random-key",
|
||||
openai_api_base="http://localhost:8080"
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model: str = "text-embedding-ada-002"
|
||||
deployment: str = model
|
||||
openai_api_version: Optional[str] = None
|
||||
openai_api_base: Optional[str] = None
|
||||
# to support explicit proxy for LocalAI
|
||||
openai_proxy: Optional[str] = None
|
||||
embedding_ctx_length: int = 8191
|
||||
"""The maximum number of tokens to embed at once."""
|
||||
openai_api_key: Optional[str] = None
|
||||
openai_organization: Optional[str] = None
|
||||
allowed_special: Union[Literal["all"], Set[str]] = set()
|
||||
disallowed_special: Union[Literal["all"], Set[str], Sequence[str]] = "all"
|
||||
chunk_size: int = 1000
|
||||
"""Maximum number of texts to embed in each batch"""
|
||||
max_retries: int = 6
|
||||
"""Maximum number of retries to make when generating."""
|
||||
request_timeout: Optional[Union[float, Tuple[float, float]]] = None
|
||||
"""Timeout in seconds for the LocalAI request."""
|
||||
headers: Any = None
|
||||
show_progress_bar: bool = False
|
||||
"""Whether to show a progress bar when embedding."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `create` call not explicitly specified."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
warnings.warn(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please confirm that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
values["model_kwargs"] = extra
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
values["openai_api_key"] = get_from_dict_or_env(
|
||||
values, "openai_api_key", "OPENAI_API_KEY"
|
||||
)
|
||||
values["openai_api_base"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_base",
|
||||
"OPENAI_API_BASE",
|
||||
default="",
|
||||
)
|
||||
values["openai_proxy"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_proxy",
|
||||
"OPENAI_PROXY",
|
||||
default="",
|
||||
)
|
||||
|
||||
default_api_version = ""
|
||||
values["openai_api_version"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_api_version",
|
||||
"OPENAI_API_VERSION",
|
||||
default=default_api_version,
|
||||
)
|
||||
values["openai_organization"] = get_from_dict_or_env(
|
||||
values,
|
||||
"openai_organization",
|
||||
"OPENAI_ORGANIZATION",
|
||||
default="",
|
||||
)
|
||||
try:
|
||||
import openai
|
||||
|
||||
values["client"] = openai.Embedding
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import openai python package. "
|
||||
"Please install it with `pip install openai`."
|
||||
)
|
||||
return values
|
||||
|
||||
@property
|
||||
def _invocation_params(self) -> Dict:
|
||||
openai_args = {
|
||||
"model": self.model,
|
||||
"request_timeout": self.request_timeout,
|
||||
"headers": self.headers,
|
||||
"api_key": self.openai_api_key,
|
||||
"organization": self.openai_organization,
|
||||
"api_base": self.openai_api_base,
|
||||
"api_version": self.openai_api_version,
|
||||
**self.model_kwargs,
|
||||
}
|
||||
if self.openai_proxy:
|
||||
import openai
|
||||
|
||||
openai.proxy = {
|
||||
"http": self.openai_proxy,
|
||||
"https": self.openai_proxy,
|
||||
} # type: ignore[assignment] # noqa: E501
|
||||
return openai_args
|
||||
|
||||
def _embedding_func(self, text: str, *, engine: str) -> List[float]:
|
||||
"""Call out to LocalAI's embedding endpoint."""
|
||||
# handle large input text
|
||||
if self.model.endswith("001"):
|
||||
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
||||
# replace newlines, which can negatively affect performance.
|
||||
text = text.replace("\n", " ")
|
||||
return embed_with_retry(
|
||||
self,
|
||||
input=[text],
|
||||
**self._invocation_params,
|
||||
)["data"][
|
||||
0
|
||||
]["embedding"]
|
||||
|
||||
async def _aembedding_func(self, text: str, *, engine: str) -> List[float]:
|
||||
"""Call out to LocalAI's embedding endpoint."""
|
||||
# handle large input text
|
||||
if self.model.endswith("001"):
|
||||
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
|
||||
# replace newlines, which can negatively affect performance.
|
||||
text = text.replace("\n", " ")
|
||||
return (
|
||||
await async_embed_with_retry(
|
||||
self,
|
||||
input=[text],
|
||||
**self._invocation_params,
|
||||
)
|
||||
)["data"][0]["embedding"]
|
||||
|
||||
def embed_documents(
|
||||
self, texts: List[str], chunk_size: Optional[int] = 0
|
||||
) -> List[List[float]]:
|
||||
"""Call out to LocalAI's embedding endpoint for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||||
specified by the class.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
# call _embedding_func for each text
|
||||
return [self._embedding_func(text, engine=self.deployment) for text in texts]
|
||||
|
||||
async def aembed_documents(
|
||||
self, texts: List[str], chunk_size: Optional[int] = 0
|
||||
) -> List[List[float]]:
|
||||
"""Call out to LocalAI's embedding endpoint async for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
chunk_size: The chunk size of embeddings. If None, will use the chunk size
|
||||
specified by the class.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
embeddings = []
|
||||
for text in texts:
|
||||
response = await self._aembedding_func(text, engine=self.deployment)
|
||||
embeddings.append(response)
|
||||
return embeddings
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to LocalAI's embedding endpoint for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
embedding = self._embedding_func(text, engine=self.deployment)
|
||||
return embedding
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Call out to LocalAI's embedding endpoint async for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embedding for the text.
|
||||
"""
|
||||
embedding = await self._aembedding_func(text, engine=self.deployment)
|
||||
return embedding
|
Reference in New Issue
Block a user