Harrison/ibm (#14133)

Co-authored-by: Mateusz Szewczyk <139469471+MateuszOssGit@users.noreply.github.com>
This commit is contained in:
Harrison Chase 2023-12-01 12:44:11 -05:00 committed by GitHub
parent 943aa01c14
commit ae646701c4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 731 additions and 0 deletions

View File

@ -0,0 +1,297 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "70996d8a",
"metadata": {},
"source": [
"# WatsonxLLM\n",
"\n",
"[WatsonxLLM](https://ibm.github.io/watson-machine-learning-sdk/fm_extensions.html) is wrapper for IBM [watsonx.ai](https://www.ibm.com/products/watsonx-ai) foundation models.\n",
"This example shows how to communicate with watsonx.ai models using LangChain."
]
},
{
"cell_type": "markdown",
"id": "ea35b2b7",
"metadata": {},
"source": [
"Install the package [`ibm_watson_machine_learning`](https://ibm.github.io/watson-machine-learning-sdk/install.html)."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2f1fff4e",
"metadata": {},
"outputs": [],
"source": [
"%pip install ibm_watson_machine_learning"
]
},
{
"cell_type": "markdown",
"id": "f406e092",
"metadata": {},
"source": [
"This cell defines the WML credentials required to work with watsonx Foundation Model inferencing.\n",
"\n",
"**Action:** Provide the IBM Cloud user API key. For details, see\n",
"[documentation](https://cloud.ibm.com/docs/account?topic=account-userapikey&interface=ui)."
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "11d572a1",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"watsonx_api_key = getpass()\n",
"os.environ[\"WATSONX_APIKEY\"] = watsonx_api_key"
]
},
{
"cell_type": "markdown",
"id": "e36acbef",
"metadata": {},
"source": [
"## Load the model\n",
"You might need to adjust model `parameters` for different models or tasks, to do so please refer to [documentation](https://ibm.github.io/watson-machine-learning-sdk/model.html#metanames.GenTextParamsMetaNames)."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "407cd500",
"metadata": {},
"outputs": [],
"source": [
"from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames as GenParams\n",
"\n",
"parameters = {\n",
" GenParams.DECODING_METHOD: \"sample\",\n",
" GenParams.MAX_NEW_TOKENS: 100,\n",
" GenParams.MIN_NEW_TOKENS: 1,\n",
" GenParams.TEMPERATURE: 0.5,\n",
" GenParams.TOP_K: 50,\n",
" GenParams.TOP_P: 1,\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "2b586538",
"metadata": {},
"source": [
"Initialize the `WatsonxLLM` class with previous set params."
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "359898de",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import WatsonxLLM\n",
"\n",
"watsonx_llm = WatsonxLLM(\n",
" model_id=\"google/flan-ul2\",\n",
" url=\"https://us-south.ml.cloud.ibm.com\",\n",
" project_id=\"***\",\n",
" params=parameters,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "2202f4e0",
"metadata": {},
"source": [
"Alternatively you can use Cloud Pak for Data credentials. For details, see [documentation](https://ibm.github.io/watson-machine-learning-sdk/setup_cpd.html).\n",
"```\n",
"watsonx_llm = WatsonxLLM(\n",
" model_id='google/flan-ul2',\n",
" url=\"***\",\n",
" username=\"***\",\n",
" password=\"***\",\n",
" instance_id=\"openshift\",\n",
" version=\"4.8\",\n",
" project_id='***',\n",
" params=parameters\n",
")\n",
"``` "
]
},
{
"cell_type": "markdown",
"id": "c25ecbd1",
"metadata": {},
"source": [
"## Create Chain\n",
"Create `PromptTemplate` objects which will be responsible for creating a random question."
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c7d80c05",
"metadata": {},
"outputs": [],
"source": [
"from langchain.prompts import PromptTemplate\n",
"\n",
"template = \"Generate a random question about {topic}: Question: \"\n",
"prompt = PromptTemplate.from_template(template)"
]
},
{
"cell_type": "markdown",
"id": "79056d8e",
"metadata": {},
"source": [
"Provide a topic and run the `LLMChain`."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "dc076c56",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'How many breeds of dog are there?'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from langchain.chains import LLMChain\n",
"\n",
"llm_chain = LLMChain(prompt=prompt, llm=watsonx_llm)\n",
"llm_chain.run(\"dog\")"
]
},
{
"cell_type": "markdown",
"id": "f571001d",
"metadata": {},
"source": [
"## Calling the Model Directly\n",
"To obtain completions, you can can the model directly using string prompt."
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "beea2b5b",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'dog'"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Calling a single prompt\n",
"\n",
"watsonx_llm(\"Who is man's best friend?\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "8ab1a25a",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"LLMResult(generations=[[Generation(text='greyhounds', generation_info={'generated_token_count': 4, 'input_token_count': 8, 'finish_reason': 'eos_token'})], [Generation(text='The Basenji is a dog breed from South Africa.', generation_info={'generated_token_count': 13, 'input_token_count': 7, 'finish_reason': 'eos_token'})]], llm_output={'model_id': 'google/flan-ul2'}, run=[RunInfo(run_id=UUID('03c73a42-db68-428e-ab8d-8ae10abc84fc')), RunInfo(run_id=UUID('c289f67a-87d6-4c8b-a8b7-0b5012c94ca8'))])"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Calling multiple prompts\n",
"\n",
"watsonx_llm.generate(\n",
" [\n",
" \"The fastest dog in the world?\",\n",
" \"Describe your chosen dog breed\",\n",
" ]\n",
")"
]
},
{
"cell_type": "markdown",
"id": "d2c9da33",
"metadata": {},
"source": [
"## Streaming the Model output \n",
"\n",
"You can stream the model output."
]
},
{
"cell_type": "code",
"execution_count": 45,
"id": "3f63166a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The golden retriever is my favorite dog because it is very friendly and good with children."
]
}
],
"source": [
"for chunk in watsonx_llm.stream(\n",
" \"Describe your favorite breed of dog and why it is your favorite.\"\n",
"):\n",
" print(chunk, end=\"\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.18"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -504,6 +504,12 @@ def _import_vllm_openai() -> Any:
return VLLMOpenAI
def _import_watsonxllm() -> Any:
from langchain.llms.watsonxllm import WatsonxLLM
return WatsonxLLM
def _import_writer() -> Any:
from langchain.llms.writer import Writer
@ -685,6 +691,8 @@ def __getattr__(name: str) -> Any:
return _import_vllm()
elif name == "VLLMOpenAI":
return _import_vllm_openai()
elif name == "WatsonxLLM":
return _import_watsonxllm()
elif name == "Writer":
return _import_writer()
elif name == "Xinference":
@ -777,6 +785,7 @@ __all__ = [
"VertexAIModelGarden",
"VLLM",
"VLLMOpenAI",
"WatsonxLLM",
"Writer",
"OctoAIEndpoint",
"Xinference",
@ -861,6 +870,7 @@ def get_type_to_cls_dict() -> Dict[str, Callable[[], Type[BaseLLM]]]:
"openllm_client": _import_openllm,
"vllm": _import_vllm,
"vllm_openai": _import_vllm_openai,
"watsonxllm": _import_watsonxllm,
"writer": _import_writer,
"xinference": _import_xinference,
"javelin-ai-gateway": _import_javelin_ai_gateway,

View File

@ -0,0 +1,354 @@
import logging
import os
from typing import Any, Dict, Iterator, List, Mapping, Optional, Union
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import BaseLLM
from langchain.pydantic_v1 import Extra, SecretStr, root_validator
from langchain.schema import LLMResult
from langchain.schema.output import Generation, GenerationChunk
from langchain.utils import convert_to_secret_str, get_from_dict_or_env
logger = logging.getLogger(__name__)
class WatsonxLLM(BaseLLM):
"""
IBM watsonx.ai large language models.
To use, you should have ``ibm_watson_machine_learning`` python package installed,
and the environment variable ``WATSONX_APIKEY`` set with your API key, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from ibm_watson_machine_learning.metanames import GenTextParamsMetaNames
parameters = {
GenTextParamsMetaNames.DECODING_METHOD: "sample",
GenTextParamsMetaNames.MAX_NEW_TOKENS: 100,
GenTextParamsMetaNames.MIN_NEW_TOKENS: 1,
GenTextParamsMetaNames.TEMPERATURE: 0.5,
GenTextParamsMetaNames.TOP_K: 50,
GenTextParamsMetaNames.TOP_P: 1,
}
from langchain.llms import WatsonxLLM
llm = WatsonxLLM(
model_id="google/flan-ul2",
url="https://us-south.ml.cloud.ibm.com",
apikey="*****",
project_id="*****",
params=parameters,
)
"""
model_id: str = ""
"""Type of model to use."""
project_id: str = ""
"""ID of the Watson Studio project."""
space_id: str = ""
"""ID of the Watson Studio space."""
url: Optional[SecretStr] = None
"""Url to Watson Machine Learning instance"""
apikey: Optional[SecretStr] = None
"""Apikey to Watson Machine Learning instance"""
token: Optional[SecretStr] = None
"""Token to Watson Machine Learning instance"""
password: Optional[SecretStr] = None
"""Password to Watson Machine Learning instance"""
username: Optional[SecretStr] = None
"""Username to Watson Machine Learning instance"""
instance_id: Optional[SecretStr] = None
"""Instance_id of Watson Machine Learning instance"""
version: Optional[SecretStr] = None
"""Version of Watson Machine Learning instance"""
params: Optional[dict] = None
"""Model parameters to use during generate requests."""
verify: Union[str, bool] = ""
"""User can pass as verify one of following:
the path to a CA_BUNDLE file
the path of directory with certificates of trusted CAs
True - default path to truststore will be taken
False - no verification will be made"""
streaming: bool = False
""" Whether to stream the results or not. """
watsonx_model: Any
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@classmethod
def is_lc_serializable(cls) -> bool:
return True
@property
def lc_secrets(self) -> Dict[str, str]:
return {
"url": "WATSONX_URL",
"apikey": "WATSONX_APIKEY",
"token": "WATSONX_TOKEN",
"password": "WATSONX_PASSWORD",
"username": "WATSONX_USERNAME",
"instance_id": "WATSONX_INSTANCE_ID",
}
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that credentials and python package exists in environment."""
values["url"] = convert_to_secret_str(
get_from_dict_or_env(values, "url", "WATSONX_URL")
)
if "cloud.ibm.com" in values.get("url", "").get_secret_value():
values["apikey"] = convert_to_secret_str(
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
)
else:
if (
not values["token"]
and "WATSONX_TOKEN" not in os.environ
and not values["password"]
and "WATSONX_PASSWORD" not in os.environ
and not values["apikey"]
and "WATSONX_APIKEY" not in os.environ
):
raise ValueError(
"Did not find 'token', 'password' or 'apikey',"
" please add an environment variable"
" `WATSONX_TOKEN`, 'WATSONX_PASSWORD' or 'WATSONX_APIKEY' "
"which contains it,"
" or pass 'token', 'password' or 'apikey'"
" as a named parameter."
)
elif values["token"] or "WATSONX_TOKEN" in os.environ:
values["token"] = convert_to_secret_str(
get_from_dict_or_env(values, "token", "WATSONX_TOKEN")
)
elif values["password"] or "WATSONX_PASSWORD" in os.environ:
values["password"] = convert_to_secret_str(
get_from_dict_or_env(values, "password", "WATSONX_PASSWORD")
)
values["username"] = convert_to_secret_str(
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
)
elif values["apikey"] or "WATSONX_APIKEY" in os.environ:
values["apikey"] = convert_to_secret_str(
get_from_dict_or_env(values, "apikey", "WATSONX_APIKEY")
)
values["username"] = convert_to_secret_str(
get_from_dict_or_env(values, "username", "WATSONX_USERNAME")
)
if not values["instance_id"] or "WATSONX_INSTANCE_ID" not in os.environ:
values["instance_id"] = convert_to_secret_str(
get_from_dict_or_env(values, "instance_id", "WATSONX_INSTANCE_ID")
)
try:
from ibm_watson_machine_learning.foundation_models import Model
credentials = {
"url": values["url"].get_secret_value() if values["url"] else None,
"apikey": values["apikey"].get_secret_value()
if values["apikey"]
else None,
"token": values["token"].get_secret_value()
if values["token"]
else None,
"password": values["password"].get_secret_value()
if values["password"]
else None,
"username": values["username"].get_secret_value()
if values["username"]
else None,
"instance_id": values["instance_id"].get_secret_value()
if values["instance_id"]
else None,
"version": values["version"].get_secret_value()
if values["version"]
else None,
}
credentials_without_none_value = {
key: value for key, value in credentials.items() if value is not None
}
watsonx_model = Model(
model_id=values["model_id"],
credentials=credentials_without_none_value,
params=values["params"],
project_id=values["project_id"],
space_id=values["space_id"],
verify=values["verify"],
)
values["watsonx_model"] = watsonx_model
except ImportError:
raise ImportError(
"Could not import ibm_watson_machine_learning python package. "
"Please install it with `pip install ibm_watson_machine_learning`."
)
return values
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {
"model_id": self.model_id,
"params": self.params,
"project_id": self.project_id,
"space_id": self.space_id,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "IBM watsonx.ai"
@staticmethod
def _extract_token_usage(
response: Optional[List[Dict[str, Any]]] = None
) -> Dict[str, Any]:
if response is None:
return {"generated_token_count": 0, "input_token_count": 0}
input_token_count = 0
generated_token_count = 0
def get_count_value(key: str, result: Dict[str, Any]) -> int:
return result.get(key, 0) or 0
for res in response:
results = res.get("results")
if results:
input_token_count += get_count_value("input_token_count", results[0])
generated_token_count += get_count_value(
"generated_token_count", results[0]
)
return {
"generated_token_count": generated_token_count,
"input_token_count": input_token_count,
}
def _create_llm_result(self, response: List[dict]) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
for res in response:
results = res.get("results")
if results:
finish_reason = results[0].get("stop_reason")
gen = Generation(
text=results[0].get("generated_text"),
generation_info={"finish_reason": finish_reason},
)
generations.append([gen])
final_token_usage = self._extract_token_usage(response)
llm_output = {"token_usage": final_token_usage, "model_id": self.model_id}
return LLMResult(generations=generations, llm_output=llm_output)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call the IBM watsonx.ai inference endpoint.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The string generated by the model.
Example:
.. code-block:: python
response = watsonxllm("What is a molecule")
"""
result = self._generate(
prompts=[prompt], stop=stop, run_manager=run_manager, **kwargs
)
return result.generations[0][0].text
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
stream: Optional[bool] = None,
**kwargs: Any,
) -> LLMResult:
"""Call the IBM watsonx.ai inference endpoint which then generate the response.
Args:
prompts: List of strings (prompts) to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The full LLMResult output.
Example:
.. code-block:: python
response = watsonxllm.generate(["What is a molecule"])
"""
should_stream = stream if stream is not None else self.streaming
if should_stream:
if len(prompts) > 1:
raise ValueError(
f"WatsonxLLM currently only supports single prompt, got {prompts}"
)
generation = GenerationChunk(text="")
stream_iter = self._stream(
prompts[0], stop=stop, run_manager=run_manager, **kwargs
)
for chunk in stream_iter:
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]])
else:
response = self.watsonx_model.generate(prompt=prompts)
return self._create_llm_result(response)
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
"""Call the IBM watsonx.ai inference endpoint which then streams the response.
Args:
prompt: The prompt to pass into the model.
stop: Optional list of stop words to use when generating.
run_manager: Optional callback manager.
Returns:
The iterator which yields generation chunks.
Example:
.. code-block:: python
response = watsonxllm.stream("What is a molecule")
for chunk in response:
print(chunk, end='')
"""
for chunk in self.watsonx_model.generate_text_stream(prompt=prompt):
if chunk:
yield GenerationChunk(text=chunk)
if run_manager:
run_manager.on_llm_new_token(chunk)

View File

@ -0,0 +1,14 @@
"""Test WatsonxLLM API wrapper."""
from langchain.llms import WatsonxLLM
def test_watsonxllm_call() -> None:
watsonxllm = WatsonxLLM(
model_id="google/flan-ul2",
url="https://us-south.ml.cloud.ibm.com",
apikey="***",
project_id="***",
)
response = watsonxllm("What color sunflower is?")
assert isinstance(response, str)

View File

@ -82,6 +82,7 @@ EXPECT_ALL = [
"QianfanLLMEndpoint",
"YandexGPT",
"VolcEngineMaasLLM",
"WatsonxLLM",
]

View File

@ -0,0 +1,55 @@
"""Test WatsonxLLM API wrapper."""
from langchain.llms import WatsonxLLM
def test_initialize_watsonxllm_bad_path_without_url() -> None:
try:
WatsonxLLM(
model_id="google/flan-ul2",
)
except ValueError as e:
assert "WATSONX_URL" in e.__str__()
def test_initialize_watsonxllm_cloud_bad_path() -> None:
try:
WatsonxLLM(model_id="google/flan-ul2", url="https://us-south.ml.cloud.ibm.com")
except ValueError as e:
assert "WATSONX_APIKEY" in e.__str__()
def test_initialize_watsonxllm_cpd_bad_path_without_all() -> None:
try:
WatsonxLLM(
model_id="google/flan-ul2",
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
)
except ValueError as e:
assert (
"WATSONX_APIKEY" in e.__str__()
and "WATSONX_PASSWORD" in e.__str__()
and "WATSONX_TOKEN" in e.__str__()
)
def test_initialize_watsonxllm_cpd_bad_path_password_without_username() -> None:
try:
WatsonxLLM(
model_id="google/flan-ul2",
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
password="test_password",
)
except ValueError as e:
assert "WATSONX_USERNAME" in e.__str__()
def test_initialize_watsonxllm_cpd_bad_path_apikey_without_username() -> None:
try:
WatsonxLLM(
model_id="google/flan-ul2",
url="https://cpd-zen.apps.cpd48.cp.fyre.ibm.com",
apikey="test_apikey",
)
except ValueError as e:
assert "WATSONX_USERNAME" in e.__str__()