huggingface: init package (#21097)

First Pr for the langchain_huggingface partner Package

- Moved some of the hugging face related class from `community` to the
new `partner package`

Still needed :
- Documentation
- Tests
- Support for the new apply_chat_template in `ChatHuggingFace`
- Confirm choice of class to support for embeddings witht he
sentence-transformer team.

cc : @efriis

---------

Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com>
Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Jofthomas
2024-05-13 22:53:15 +02:00
committed by GitHub
parent 9fce03e7db
commit afd85b60fc
33 changed files with 5299 additions and 133 deletions

View File

@@ -0,0 +1,9 @@
from langchain_huggingface.embeddings.huggingface import HuggingFaceEmbeddings
from langchain_huggingface.embeddings.huggingface_endpoint import (
HuggingFaceEndpointEmbeddings,
)
__all__ = [
"HuggingFaceEmbeddings",
"HuggingFaceEndpointEmbeddings",
]

View File

@@ -0,0 +1,102 @@
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
class HuggingFaceEmbeddings(BaseModel, Embeddings):
"""HuggingFace sentence_transformers embedding models.
To use, you should have the ``sentence_transformers`` python package installed.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEmbeddings
model_name = "sentence-transformers/all-mpnet-base-v2"
model_kwargs = {'device': 'cpu'}
encode_kwargs = {'normalize_embeddings': False}
hf = HuggingFaceEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs
)
"""
client: Any #: :meta private:
model_name: str = DEFAULT_MODEL_NAME
"""Model name to use."""
cache_folder: Optional[str] = None
"""Path to store models.
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`,
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Keyword arguments to pass when calling the `encode` method of the Sentence
Transformer model, such as `prompt_name`, `prompt`, `batch_size`, `precision`,
`normalize_embeddings`, and more.
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
multi_process: bool = False
"""Run encode() on multiple GPUs."""
show_progress: bool = False
"""Whether to show a progress bar."""
def __init__(self, **kwargs: Any):
"""Initialize the sentence_transformer."""
super().__init__(**kwargs)
try:
import sentence_transformers # type: ignore[import]
except ImportError as exc:
raise ImportError(
"Could not import sentence_transformers python package. "
"Please install it with `pip install sentence-transformers`."
) from exc
self.client = sentence_transformers.SentenceTransformer(
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
)
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Compute doc embeddings using a HuggingFace transformer model.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
import sentence_transformers # type: ignore[import]
texts = list(map(lambda x: x.replace("\n", " "), texts))
if self.multi_process:
pool = self.client.start_multi_process_pool()
embeddings = self.client.encode_multi_process(texts, pool)
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
else:
embeddings = self.client.encode(
texts, show_progress_bar=self.show_progress, **self.encode_kwargs
)
return embeddings.tolist()
def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a HuggingFace transformer model.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
return self.embed_documents([text])[0]

View File

@@ -0,0 +1,151 @@
import json
import os
from typing import Any, Dict, List, Optional
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
VALID_TASKS = ("feature-extraction",)
class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
"""HuggingFaceHub embedding models.
To use, you should have the ``huggingface_hub`` python package installed, and the
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
it as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain_community.embeddings import HuggingFaceEndpointEmbeddings
model = "sentence-transformers/all-mpnet-base-v2"
hf = HuggingFaceEndpointEmbeddings(
model=model,
task="feature-extraction",
huggingfacehub_api_token="my-api-key",
)
"""
client: Any #: :meta private:
async_client: Any #: :meta private:
model: Optional[str] = None
"""Model name to use."""
repo_id: Optional[str] = None
"""Huggingfacehub repository id, for backward compatibility."""
task: Optional[str] = "feature-extraction"
"""Task to call the model with."""
model_kwargs: Optional[dict] = None
"""Keyword arguments to pass to the model."""
huggingfacehub_api_token: Optional[str] = None
class Config:
"""Configuration for this pydantic object."""
extra = Extra.forbid
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
huggingfacehub_api_token = values["huggingfacehub_api_token"] or os.getenv(
"HUGGINGFACEHUB_API_TOKEN"
)
try:
from huggingface_hub import ( # type: ignore[import]
AsyncInferenceClient,
InferenceClient,
)
if values["model"]:
values["repo_id"] = values["model"]
elif values["repo_id"]:
values["model"] = values["repo_id"]
else:
values["model"] = DEFAULT_MODEL
values["repo_id"] = DEFAULT_MODEL
client = InferenceClient(
model=values["model"],
token=huggingfacehub_api_token,
)
async_client = AsyncInferenceClient(
model=values["model"],
token=huggingfacehub_api_token,
)
if values["task"] not in VALID_TASKS:
raise ValueError(
f"Got invalid task {values['task']}, "
f"currently only {VALID_TASKS} are supported"
)
values["client"] = client
values["async_client"] = async_client
except ImportError:
raise ImportError(
"Could not import huggingface_hub python package. "
"Please install it with `pip install huggingface_hub`."
)
return values
def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = self.client.post(
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
)
return json.loads(responses.decode())
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
Returns:
List of embeddings, one for each text.
"""
# replace newlines, which can negatively affect performance.
texts = [text.replace("\n", " ") for text in texts]
_model_kwargs = self.model_kwargs or {}
responses = await self.async_client.post(
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
)
return json.loads(responses.decode())
def embed_query(self, text: str) -> List[float]:
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = self.embed_documents([text])[0]
return response
async def aembed_query(self, text: str) -> List[float]:
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embeddings for the text.
"""
response = (await self.aembed_documents([text]))[0]
return response