mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-13 21:47:12 +00:00
huggingface: init package (#21097)
First Pr for the langchain_huggingface partner Package - Moved some of the hugging face related class from `community` to the new `partner package` Still needed : - Documentation - Tests - Support for the new apply_chat_template in `ChatHuggingFace` - Confirm choice of class to support for embeddings witht he sentence-transformer team. cc : @efriis --------- Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -0,0 +1,9 @@
|
||||
from langchain_huggingface.embeddings.huggingface import HuggingFaceEmbeddings
|
||||
from langchain_huggingface.embeddings.huggingface_endpoint import (
|
||||
HuggingFaceEndpointEmbeddings,
|
||||
)
|
||||
|
||||
__all__ = [
|
||||
"HuggingFaceEmbeddings",
|
||||
"HuggingFaceEndpointEmbeddings",
|
||||
]
|
@@ -0,0 +1,102 @@
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, Field
|
||||
|
||||
DEFAULT_MODEL_NAME = "sentence-transformers/all-mpnet-base-v2"
|
||||
|
||||
|
||||
class HuggingFaceEmbeddings(BaseModel, Embeddings):
|
||||
"""HuggingFace sentence_transformers embedding models.
|
||||
|
||||
To use, you should have the ``sentence_transformers`` python package installed.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import HuggingFaceEmbeddings
|
||||
|
||||
model_name = "sentence-transformers/all-mpnet-base-v2"
|
||||
model_kwargs = {'device': 'cpu'}
|
||||
encode_kwargs = {'normalize_embeddings': False}
|
||||
hf = HuggingFaceEmbeddings(
|
||||
model_name=model_name,
|
||||
model_kwargs=model_kwargs,
|
||||
encode_kwargs=encode_kwargs
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
model_name: str = DEFAULT_MODEL_NAME
|
||||
"""Model name to use."""
|
||||
cache_folder: Optional[str] = None
|
||||
"""Path to store models.
|
||||
Can be also set by SENTENCE_TRANSFORMERS_HOME environment variable."""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass to the Sentence Transformer model, such as `device`,
|
||||
`prompts`, `default_prompt_name`, `revision`, `trust_remote_code`, or `token`.
|
||||
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer"""
|
||||
encode_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Keyword arguments to pass when calling the `encode` method of the Sentence
|
||||
Transformer model, such as `prompt_name`, `prompt`, `batch_size`, `precision`,
|
||||
`normalize_embeddings`, and more.
|
||||
See also the Sentence Transformer documentation: https://sbert.net/docs/package_reference/SentenceTransformer.html#sentence_transformers.SentenceTransformer.encode"""
|
||||
multi_process: bool = False
|
||||
"""Run encode() on multiple GPUs."""
|
||||
show_progress: bool = False
|
||||
"""Whether to show a progress bar."""
|
||||
|
||||
def __init__(self, **kwargs: Any):
|
||||
"""Initialize the sentence_transformer."""
|
||||
super().__init__(**kwargs)
|
||||
try:
|
||||
import sentence_transformers # type: ignore[import]
|
||||
|
||||
except ImportError as exc:
|
||||
raise ImportError(
|
||||
"Could not import sentence_transformers python package. "
|
||||
"Please install it with `pip install sentence-transformers`."
|
||||
) from exc
|
||||
|
||||
self.client = sentence_transformers.SentenceTransformer(
|
||||
self.model_name, cache_folder=self.cache_folder, **self.model_kwargs
|
||||
)
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Compute doc embeddings using a HuggingFace transformer model.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
import sentence_transformers # type: ignore[import]
|
||||
|
||||
texts = list(map(lambda x: x.replace("\n", " "), texts))
|
||||
if self.multi_process:
|
||||
pool = self.client.start_multi_process_pool()
|
||||
embeddings = self.client.encode_multi_process(texts, pool)
|
||||
sentence_transformers.SentenceTransformer.stop_multi_process_pool(pool)
|
||||
else:
|
||||
embeddings = self.client.encode(
|
||||
texts, show_progress_bar=self.show_progress, **self.encode_kwargs
|
||||
)
|
||||
|
||||
return embeddings.tolist()
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Compute query embeddings using a HuggingFace transformer model.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
return self.embed_documents([text])[0]
|
@@ -0,0 +1,151 @@
|
||||
import json
|
||||
import os
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
from langchain_core.embeddings import Embeddings
|
||||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
|
||||
|
||||
DEFAULT_MODEL = "sentence-transformers/all-mpnet-base-v2"
|
||||
VALID_TASKS = ("feature-extraction",)
|
||||
|
||||
|
||||
class HuggingFaceEndpointEmbeddings(BaseModel, Embeddings):
|
||||
"""HuggingFaceHub embedding models.
|
||||
|
||||
To use, you should have the ``huggingface_hub`` python package installed, and the
|
||||
environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
|
||||
it as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.embeddings import HuggingFaceEndpointEmbeddings
|
||||
model = "sentence-transformers/all-mpnet-base-v2"
|
||||
hf = HuggingFaceEndpointEmbeddings(
|
||||
model=model,
|
||||
task="feature-extraction",
|
||||
huggingfacehub_api_token="my-api-key",
|
||||
)
|
||||
"""
|
||||
|
||||
client: Any #: :meta private:
|
||||
async_client: Any #: :meta private:
|
||||
model: Optional[str] = None
|
||||
"""Model name to use."""
|
||||
repo_id: Optional[str] = None
|
||||
"""Huggingfacehub repository id, for backward compatibility."""
|
||||
task: Optional[str] = "feature-extraction"
|
||||
"""Task to call the model with."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments to pass to the model."""
|
||||
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that api key and python package exists in environment."""
|
||||
huggingfacehub_api_token = values["huggingfacehub_api_token"] or os.getenv(
|
||||
"HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
|
||||
try:
|
||||
from huggingface_hub import ( # type: ignore[import]
|
||||
AsyncInferenceClient,
|
||||
InferenceClient,
|
||||
)
|
||||
|
||||
if values["model"]:
|
||||
values["repo_id"] = values["model"]
|
||||
elif values["repo_id"]:
|
||||
values["model"] = values["repo_id"]
|
||||
else:
|
||||
values["model"] = DEFAULT_MODEL
|
||||
values["repo_id"] = DEFAULT_MODEL
|
||||
|
||||
client = InferenceClient(
|
||||
model=values["model"],
|
||||
token=huggingfacehub_api_token,
|
||||
)
|
||||
|
||||
async_client = AsyncInferenceClient(
|
||||
model=values["model"],
|
||||
token=huggingfacehub_api_token,
|
||||
)
|
||||
|
||||
if values["task"] not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {values['task']}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
values["client"] = client
|
||||
values["async_client"] = async_client
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import huggingface_hub python package. "
|
||||
"Please install it with `pip install huggingface_hub`."
|
||||
)
|
||||
return values
|
||||
|
||||
def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
# replace newlines, which can negatively affect performance.
|
||||
texts = [text.replace("\n", " ") for text in texts]
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
responses = self.client.post(
|
||||
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
|
||||
)
|
||||
return json.loads(responses.decode())
|
||||
|
||||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
|
||||
"""Async Call to HuggingFaceHub's embedding endpoint for embedding search docs.
|
||||
|
||||
Args:
|
||||
texts: The list of texts to embed.
|
||||
|
||||
Returns:
|
||||
List of embeddings, one for each text.
|
||||
"""
|
||||
# replace newlines, which can negatively affect performance.
|
||||
texts = [text.replace("\n", " ") for text in texts]
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
responses = await self.async_client.post(
|
||||
json={"inputs": texts, "parameters": _model_kwargs}, task=self.task
|
||||
)
|
||||
return json.loads(responses.decode())
|
||||
|
||||
def embed_query(self, text: str) -> List[float]:
|
||||
"""Call out to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
response = self.embed_documents([text])[0]
|
||||
return response
|
||||
|
||||
async def aembed_query(self, text: str) -> List[float]:
|
||||
"""Async Call to HuggingFaceHub's embedding endpoint for embedding query text.
|
||||
|
||||
Args:
|
||||
text: The text to embed.
|
||||
|
||||
Returns:
|
||||
Embeddings for the text.
|
||||
"""
|
||||
response = (await self.aembed_documents([text]))[0]
|
||||
return response
|
Reference in New Issue
Block a user