mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-02 19:47:13 +00:00
huggingface: init package (#21097)
First Pr for the langchain_huggingface partner Package - Moved some of the hugging face related class from `community` to the new `partner package` Still needed : - Documentation - Tests - Support for the new apply_chat_template in `ChatHuggingFace` - Confirm choice of class to support for embeddings witht he sentence-transformer team. cc : @efriis --------- Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -0,0 +1,7 @@
|
||||
from langchain_huggingface.llms.huggingface_endpoint import HuggingFaceEndpoint
|
||||
from langchain_huggingface.llms.huggingface_pipeline import HuggingFacePipeline
|
||||
|
||||
__all__ = [
|
||||
"HuggingFaceEndpoint",
|
||||
"HuggingFacePipeline",
|
||||
]
|
@@ -0,0 +1,372 @@
|
||||
import json
|
||||
import logging
|
||||
from typing import Any, AsyncIterator, Dict, Iterator, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import (
|
||||
AsyncCallbackManagerForLLMRun,
|
||||
CallbackManagerForLLMRun,
|
||||
)
|
||||
from langchain_core.language_models.llms import LLM
|
||||
from langchain_core.outputs import GenerationChunk
|
||||
from langchain_core.pydantic_v1 import Extra, Field, root_validator
|
||||
from langchain_core.utils import get_from_dict_or_env, get_pydantic_field_names
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
VALID_TASKS = (
|
||||
"text2text-generation",
|
||||
"text-generation",
|
||||
"summarization",
|
||||
"conversational",
|
||||
)
|
||||
|
||||
|
||||
class HuggingFaceEndpoint(LLM):
|
||||
"""
|
||||
HuggingFace Endpoint.
|
||||
|
||||
To use this class, you should have installed the ``huggingface_hub`` package, and
|
||||
the environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token,
|
||||
or given as a named parameter to the constructor.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
# Basic Example (no streaming)
|
||||
llm = HuggingFaceEndpoint(
|
||||
endpoint_url="http://localhost:8010/",
|
||||
max_new_tokens=512,
|
||||
top_k=10,
|
||||
top_p=0.95,
|
||||
typical_p=0.95,
|
||||
temperature=0.01,
|
||||
repetition_penalty=1.03,
|
||||
huggingfacehub_api_token="my-api-key"
|
||||
)
|
||||
print(llm.invoke("What is Deep Learning?"))
|
||||
|
||||
# Streaming response example
|
||||
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
|
||||
|
||||
callbacks = [StreamingStdOutCallbackHandler()]
|
||||
llm = HuggingFaceEndpoint(
|
||||
endpoint_url="http://localhost:8010/",
|
||||
max_new_tokens=512,
|
||||
top_k=10,
|
||||
top_p=0.95,
|
||||
typical_p=0.95,
|
||||
temperature=0.01,
|
||||
repetition_penalty=1.03,
|
||||
callbacks=callbacks,
|
||||
streaming=True,
|
||||
huggingfacehub_api_token="my-api-key"
|
||||
)
|
||||
print(llm.invoke("What is Deep Learning?"))
|
||||
|
||||
""" # noqa: E501
|
||||
|
||||
endpoint_url: Optional[str] = None
|
||||
"""Endpoint URL to use."""
|
||||
repo_id: Optional[str] = None
|
||||
"""Repo to use."""
|
||||
huggingfacehub_api_token: Optional[str] = None
|
||||
max_new_tokens: int = 512
|
||||
"""Maximum number of generated tokens"""
|
||||
top_k: Optional[int] = None
|
||||
"""The number of highest probability vocabulary tokens to keep for
|
||||
top-k-filtering."""
|
||||
top_p: Optional[float] = 0.95
|
||||
"""If set to < 1, only the smallest set of most probable tokens with probabilities
|
||||
that add up to `top_p` or higher are kept for generation."""
|
||||
typical_p: Optional[float] = 0.95
|
||||
"""Typical Decoding mass. See [Typical Decoding for Natural Language
|
||||
Generation](https://arxiv.org/abs/2202.00666) for more information."""
|
||||
temperature: Optional[float] = 0.8
|
||||
"""The value used to module the logits distribution."""
|
||||
repetition_penalty: Optional[float] = None
|
||||
"""The parameter for repetition penalty. 1.0 means no penalty.
|
||||
See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details."""
|
||||
return_full_text: bool = False
|
||||
"""Whether to prepend the prompt to the generated text"""
|
||||
truncate: Optional[int] = None
|
||||
"""Truncate inputs tokens to the given size"""
|
||||
stop_sequences: List[str] = Field(default_factory=list)
|
||||
"""Stop generating tokens if a member of `stop_sequences` is generated"""
|
||||
seed: Optional[int] = None
|
||||
"""Random sampling seed"""
|
||||
inference_server_url: str = ""
|
||||
"""text-generation-inference instance base url"""
|
||||
timeout: int = 120
|
||||
"""Timeout in seconds"""
|
||||
streaming: bool = False
|
||||
"""Whether to generate a stream of tokens asynchronously"""
|
||||
do_sample: bool = False
|
||||
"""Activate logits sampling"""
|
||||
watermark: bool = False
|
||||
"""Watermarking with [A Watermark for Large Language Models]
|
||||
(https://arxiv.org/abs/2301.10226)"""
|
||||
server_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any text-generation-inference server parameters not explicitly specified"""
|
||||
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
|
||||
"""Holds any model parameters valid for `call` not explicitly specified"""
|
||||
model: str
|
||||
client: Any
|
||||
async_client: Any
|
||||
task: Optional[str] = None
|
||||
"""Task to call the model with.
|
||||
Should be a task that returns `generated_text` or `summary_text`."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@root_validator(pre=True)
|
||||
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""Build extra kwargs from additional params that were passed in."""
|
||||
all_required_field_names = get_pydantic_field_names(cls)
|
||||
extra = values.get("model_kwargs", {})
|
||||
for field_name in list(values):
|
||||
if field_name in extra:
|
||||
raise ValueError(f"Found {field_name} supplied twice.")
|
||||
if field_name not in all_required_field_names:
|
||||
logger.warning(
|
||||
f"""WARNING! {field_name} is not default parameter.
|
||||
{field_name} was transferred to model_kwargs.
|
||||
Please make sure that {field_name} is what you intended."""
|
||||
)
|
||||
extra[field_name] = values.pop(field_name)
|
||||
|
||||
invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
|
||||
if invalid_model_kwargs:
|
||||
raise ValueError(
|
||||
f"Parameters {invalid_model_kwargs} should be specified explicitly. "
|
||||
f"Instead they were passed in as part of `model_kwargs` parameter."
|
||||
)
|
||||
|
||||
values["model_kwargs"] = extra
|
||||
if "endpoint_url" not in values and "repo_id" not in values:
|
||||
raise ValueError(
|
||||
"Please specify an `endpoint_url` or `repo_id` for the model."
|
||||
)
|
||||
if "endpoint_url" in values and "repo_id" in values:
|
||||
raise ValueError(
|
||||
"Please specify either an `endpoint_url` OR a `repo_id`, not both."
|
||||
)
|
||||
values["model"] = values.get("endpoint_url") or values.get("repo_id")
|
||||
return values
|
||||
|
||||
@root_validator()
|
||||
def validate_environment(cls, values: Dict) -> Dict:
|
||||
"""Validate that package is installed and that the API token is valid."""
|
||||
try:
|
||||
from huggingface_hub import login # type: ignore[import]
|
||||
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import huggingface_hub python package. "
|
||||
"Please install it with `pip install huggingface_hub`."
|
||||
)
|
||||
try:
|
||||
huggingfacehub_api_token = get_from_dict_or_env(
|
||||
values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
|
||||
)
|
||||
login(token=huggingfacehub_api_token)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
"Could not authenticate with huggingface_hub. "
|
||||
"Please check your API token."
|
||||
) from e
|
||||
|
||||
from huggingface_hub import AsyncInferenceClient, InferenceClient
|
||||
|
||||
values["client"] = InferenceClient(
|
||||
model=values["model"],
|
||||
timeout=values["timeout"],
|
||||
token=huggingfacehub_api_token,
|
||||
**values["server_kwargs"],
|
||||
)
|
||||
values["async_client"] = AsyncInferenceClient(
|
||||
model=values["model"],
|
||||
timeout=values["timeout"],
|
||||
token=huggingfacehub_api_token,
|
||||
**values["server_kwargs"],
|
||||
)
|
||||
|
||||
return values
|
||||
|
||||
@property
|
||||
def _default_params(self) -> Dict[str, Any]:
|
||||
"""Get the default parameters for calling text generation inference API."""
|
||||
return {
|
||||
"max_new_tokens": self.max_new_tokens,
|
||||
"top_k": self.top_k,
|
||||
"top_p": self.top_p,
|
||||
"typical_p": self.typical_p,
|
||||
"temperature": self.temperature,
|
||||
"repetition_penalty": self.repetition_penalty,
|
||||
"return_full_text": self.return_full_text,
|
||||
"truncate": self.truncate,
|
||||
"stop_sequences": self.stop_sequences,
|
||||
"seed": self.seed,
|
||||
"do_sample": self.do_sample,
|
||||
"watermark": self.watermark,
|
||||
**self.model_kwargs,
|
||||
}
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
_model_kwargs = self.model_kwargs or {}
|
||||
return {
|
||||
**{"endpoint_url": self.endpoint_url, "task": self.task},
|
||||
**{"model_kwargs": _model_kwargs},
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
"""Return type of llm."""
|
||||
return "huggingface_endpoint"
|
||||
|
||||
def _invocation_params(
|
||||
self, runtime_stop: Optional[List[str]], **kwargs: Any
|
||||
) -> Dict[str, Any]:
|
||||
params = {**self._default_params, **kwargs}
|
||||
params["stop_sequences"] = params["stop_sequences"] + (runtime_stop or [])
|
||||
return params
|
||||
|
||||
def _call(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
"""Call out to HuggingFace Hub's inference endpoint."""
|
||||
invocation_params = self._invocation_params(stop, **kwargs)
|
||||
if self.streaming:
|
||||
completion = ""
|
||||
for chunk in self._stream(prompt, stop, run_manager, **invocation_params):
|
||||
completion += chunk.text
|
||||
return completion
|
||||
else:
|
||||
invocation_params["stop"] = invocation_params[
|
||||
"stop_sequences"
|
||||
] # porting 'stop_sequences' into the 'stop' argument
|
||||
response = self.client.post(
|
||||
json={"inputs": prompt, "parameters": invocation_params},
|
||||
stream=False,
|
||||
task=self.task,
|
||||
)
|
||||
response_text = json.loads(response.decode())[0]["generated_text"]
|
||||
|
||||
# Maybe the generation has stopped at one of the stop sequences:
|
||||
# then we remove this stop sequence from the end of the generated text
|
||||
for stop_seq in invocation_params["stop_sequences"]:
|
||||
if response_text[-len(stop_seq) :] == stop_seq:
|
||||
response_text = response_text[: -len(stop_seq)]
|
||||
return response_text
|
||||
|
||||
async def _acall(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> str:
|
||||
invocation_params = self._invocation_params(stop, **kwargs)
|
||||
if self.streaming:
|
||||
completion = ""
|
||||
async for chunk in self._astream(
|
||||
prompt, stop, run_manager, **invocation_params
|
||||
):
|
||||
completion += chunk.text
|
||||
return completion
|
||||
else:
|
||||
invocation_params["stop"] = invocation_params["stop_sequences"]
|
||||
response = await self.async_client.post(
|
||||
json={"inputs": prompt, "parameters": invocation_params},
|
||||
stream=False,
|
||||
task=self.task,
|
||||
)
|
||||
response_text = json.loads(response.decode())[0]["generated_text"]
|
||||
|
||||
# Maybe the generation has stopped at one of the stop sequences:
|
||||
# then remove this stop sequence from the end of the generated text
|
||||
for stop_seq in invocation_params["stop_sequences"]:
|
||||
if response_text[-len(stop_seq) :] == stop_seq:
|
||||
response_text = response_text[: -len(stop_seq)]
|
||||
return response_text
|
||||
|
||||
def _stream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> Iterator[GenerationChunk]:
|
||||
invocation_params = self._invocation_params(stop, **kwargs)
|
||||
|
||||
for response in self.client.text_generation(
|
||||
prompt, **invocation_params, stream=True
|
||||
):
|
||||
# identify stop sequence in generated text, if any
|
||||
stop_seq_found: Optional[str] = None
|
||||
for stop_seq in invocation_params["stop_sequences"]:
|
||||
if stop_seq in response:
|
||||
stop_seq_found = stop_seq
|
||||
|
||||
# identify text to yield
|
||||
text: Optional[str] = None
|
||||
if stop_seq_found:
|
||||
text = response[: response.index(stop_seq_found)]
|
||||
else:
|
||||
text = response
|
||||
|
||||
# yield text, if any
|
||||
if text:
|
||||
chunk = GenerationChunk(text=text)
|
||||
|
||||
if run_manager:
|
||||
run_manager.on_llm_new_token(chunk.text)
|
||||
yield chunk
|
||||
|
||||
# break if stop sequence found
|
||||
if stop_seq_found:
|
||||
break
|
||||
|
||||
async def _astream(
|
||||
self,
|
||||
prompt: str,
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> AsyncIterator[GenerationChunk]:
|
||||
invocation_params = self._invocation_params(stop, **kwargs)
|
||||
async for response in await self.async_client.text_generation(
|
||||
prompt, **invocation_params, stream=True
|
||||
):
|
||||
# identify stop sequence in generated text, if any
|
||||
stop_seq_found: Optional[str] = None
|
||||
for stop_seq in invocation_params["stop_sequences"]:
|
||||
if stop_seq in response:
|
||||
stop_seq_found = stop_seq
|
||||
|
||||
# identify text to yield
|
||||
text: Optional[str] = None
|
||||
if stop_seq_found:
|
||||
text = response[: response.index(stop_seq_found)]
|
||||
else:
|
||||
text = response
|
||||
|
||||
# yield text, if any
|
||||
if text:
|
||||
chunk = GenerationChunk(text=text)
|
||||
|
||||
if run_manager:
|
||||
await run_manager.on_llm_new_token(chunk.text)
|
||||
yield chunk
|
||||
|
||||
# break if stop sequence found
|
||||
if stop_seq_found:
|
||||
break
|
@@ -0,0 +1,299 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.util
|
||||
import logging
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import BaseLLM
|
||||
from langchain_core.outputs import Generation, LLMResult
|
||||
from langchain_core.pydantic_v1 import Extra
|
||||
|
||||
DEFAULT_MODEL_ID = "gpt2"
|
||||
DEFAULT_TASK = "text-generation"
|
||||
VALID_TASKS = (
|
||||
"text2text-generation",
|
||||
"text-generation",
|
||||
"summarization",
|
||||
"translation",
|
||||
)
|
||||
DEFAULT_BATCH_SIZE = 4
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFacePipeline(BaseLLM):
|
||||
"""HuggingFace Pipeline API.
|
||||
|
||||
To use, you should have the ``transformers`` python package installed.
|
||||
|
||||
Only supports `text-generation`, `text2text-generation`, `summarization` and
|
||||
`translation` for now.
|
||||
|
||||
Example using from_model_id:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
hf = HuggingFacePipeline.from_model_id(
|
||||
model_id="gpt2",
|
||||
task="text-generation",
|
||||
pipeline_kwargs={"max_new_tokens": 10},
|
||||
)
|
||||
Example passing pipeline in directly:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
model_id = "gpt2"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
pipe = pipeline(
|
||||
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
||||
)
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
"""
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name to use."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments passed to the model."""
|
||||
pipeline_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments passed to the pipeline."""
|
||||
batch_size: int = DEFAULT_BATCH_SIZE
|
||||
"""Batch size to use when passing multiple documents to generate."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@classmethod
|
||||
def from_model_id(
|
||||
cls,
|
||||
model_id: str,
|
||||
task: str,
|
||||
backend: str = "default",
|
||||
device: Optional[int] = -1,
|
||||
device_map: Optional[str] = None,
|
||||
model_kwargs: Optional[dict] = None,
|
||||
pipeline_kwargs: Optional[dict] = None,
|
||||
batch_size: int = DEFAULT_BATCH_SIZE,
|
||||
**kwargs: Any,
|
||||
) -> HuggingFacePipeline:
|
||||
"""Construct the pipeline object from model_id and task."""
|
||||
try:
|
||||
from transformers import ( # type: ignore[import]
|
||||
AutoModelForCausalLM,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
)
|
||||
from transformers import pipeline as hf_pipeline # type: ignore[import]
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import transformers python package. "
|
||||
"Please install it with `pip install transformers`."
|
||||
)
|
||||
|
||||
_model_kwargs = model_kwargs or {}
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
||||
|
||||
try:
|
||||
if task == "text-generation":
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import ( # type: ignore[import]
|
||||
OVModelForCausalLM,
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
elif task in ("text2text-generation", "summarization", "translation"):
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
except ImportError as e:
|
||||
raise ValueError(
|
||||
f"Could not load the {task} model due to missing dependencies."
|
||||
) from e
|
||||
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token_id = model.config.eos_token_id
|
||||
|
||||
if (
|
||||
(
|
||||
getattr(model, "is_loaded_in_4bit", False)
|
||||
or getattr(model, "is_loaded_in_8bit", False)
|
||||
)
|
||||
and device is not None
|
||||
and backend == "default"
|
||||
):
|
||||
logger.warning(
|
||||
f"Setting the `device` argument to None from {device} to avoid "
|
||||
"the error caused by attempting to move the model that was already "
|
||||
"loaded on the GPU using the Accelerate module to the same or "
|
||||
"another device."
|
||||
)
|
||||
device = None
|
||||
|
||||
if (
|
||||
device is not None
|
||||
and importlib.util.find_spec("torch") is not None
|
||||
and backend == "default"
|
||||
):
|
||||
import torch
|
||||
|
||||
cuda_device_count = torch.cuda.device_count()
|
||||
if device < -1 or (device >= cuda_device_count):
|
||||
raise ValueError(
|
||||
f"Got device=={device}, "
|
||||
f"device is required to be within [-1, {cuda_device_count})"
|
||||
)
|
||||
if device_map is not None and device < 0:
|
||||
device = None
|
||||
if device is not None and device < 0 and cuda_device_count > 0:
|
||||
logger.warning(
|
||||
"Device has %d GPUs available. "
|
||||
"Provide device={deviceId} to `from_model_id` to use available"
|
||||
"GPUs for execution. deviceId is -1 (default) for CPU and "
|
||||
"can be a positive integer associated with CUDA device id.",
|
||||
cuda_device_count,
|
||||
)
|
||||
if device is not None and device_map is not None and backend == "openvino":
|
||||
logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
|
||||
if "trust_remote_code" in _model_kwargs:
|
||||
_model_kwargs = {
|
||||
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
||||
}
|
||||
_pipeline_kwargs = pipeline_kwargs or {}
|
||||
pipeline = hf_pipeline(
|
||||
task=task,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
device_map=device_map,
|
||||
batch_size=batch_size,
|
||||
model_kwargs=_model_kwargs,
|
||||
**_pipeline_kwargs,
|
||||
)
|
||||
if pipeline.task not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {pipeline.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
return cls(
|
||||
pipeline=pipeline,
|
||||
model_id=model_id,
|
||||
model_kwargs=_model_kwargs,
|
||||
pipeline_kwargs=_pipeline_kwargs,
|
||||
batch_size=batch_size,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"model_id": self.model_id,
|
||||
"model_kwargs": self.model_kwargs,
|
||||
"pipeline_kwargs": self.pipeline_kwargs,
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "huggingface_pipeline"
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
# List to hold all results
|
||||
text_generations: List[str] = []
|
||||
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
||||
|
||||
for i in range(0, len(prompts), self.batch_size):
|
||||
batch_prompts = prompts[i : i + self.batch_size]
|
||||
|
||||
# Process batch of prompts
|
||||
responses = self.pipeline(
|
||||
batch_prompts,
|
||||
**pipeline_kwargs,
|
||||
)
|
||||
|
||||
# Process each response in the batch
|
||||
for j, response in enumerate(responses):
|
||||
if isinstance(response, list):
|
||||
# if model returns multiple generations, pick the top one
|
||||
response = response[0]
|
||||
|
||||
if self.pipeline.task == "text-generation":
|
||||
text = response["generated_text"]
|
||||
elif self.pipeline.task == "text2text-generation":
|
||||
text = response["generated_text"]
|
||||
elif self.pipeline.task == "summarization":
|
||||
text = response["summary_text"]
|
||||
elif self.pipeline.task in "translation":
|
||||
text = response["translation_text"]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {self.pipeline.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
|
||||
# Append the processed text to results
|
||||
text_generations.append(text)
|
||||
|
||||
return LLMResult(
|
||||
generations=[[Generation(text=text)] for text in text_generations]
|
||||
)
|
Reference in New Issue
Block a user