mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-08 14:31:55 +00:00
huggingface: init package (#21097)
First Pr for the langchain_huggingface partner Package - Moved some of the hugging face related class from `community` to the new `partner package` Still needed : - Documentation - Tests - Support for the new apply_chat_template in `ChatHuggingFace` - Confirm choice of class to support for embeddings witht he sentence-transformer team. cc : @efriis --------- Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -0,0 +1,299 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import importlib.util
|
||||
import logging
|
||||
from typing import Any, List, Mapping, Optional
|
||||
|
||||
from langchain_core.callbacks import CallbackManagerForLLMRun
|
||||
from langchain_core.language_models.llms import BaseLLM
|
||||
from langchain_core.outputs import Generation, LLMResult
|
||||
from langchain_core.pydantic_v1 import Extra
|
||||
|
||||
DEFAULT_MODEL_ID = "gpt2"
|
||||
DEFAULT_TASK = "text-generation"
|
||||
VALID_TASKS = (
|
||||
"text2text-generation",
|
||||
"text-generation",
|
||||
"summarization",
|
||||
"translation",
|
||||
)
|
||||
DEFAULT_BATCH_SIZE = 4
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HuggingFacePipeline(BaseLLM):
|
||||
"""HuggingFace Pipeline API.
|
||||
|
||||
To use, you should have the ``transformers`` python package installed.
|
||||
|
||||
Only supports `text-generation`, `text2text-generation`, `summarization` and
|
||||
`translation` for now.
|
||||
|
||||
Example using from_model_id:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
hf = HuggingFacePipeline.from_model_id(
|
||||
model_id="gpt2",
|
||||
task="text-generation",
|
||||
pipeline_kwargs={"max_new_tokens": 10},
|
||||
)
|
||||
Example passing pipeline in directly:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain_community.llms import HuggingFacePipeline
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
||||
|
||||
model_id = "gpt2"
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
pipe = pipeline(
|
||||
"text-generation", model=model, tokenizer=tokenizer, max_new_tokens=10
|
||||
)
|
||||
hf = HuggingFacePipeline(pipeline=pipe)
|
||||
"""
|
||||
|
||||
pipeline: Any #: :meta private:
|
||||
model_id: str = DEFAULT_MODEL_ID
|
||||
"""Model name to use."""
|
||||
model_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments passed to the model."""
|
||||
pipeline_kwargs: Optional[dict] = None
|
||||
"""Keyword arguments passed to the pipeline."""
|
||||
batch_size: int = DEFAULT_BATCH_SIZE
|
||||
"""Batch size to use when passing multiple documents to generate."""
|
||||
|
||||
class Config:
|
||||
"""Configuration for this pydantic object."""
|
||||
|
||||
extra = Extra.forbid
|
||||
|
||||
@classmethod
|
||||
def from_model_id(
|
||||
cls,
|
||||
model_id: str,
|
||||
task: str,
|
||||
backend: str = "default",
|
||||
device: Optional[int] = -1,
|
||||
device_map: Optional[str] = None,
|
||||
model_kwargs: Optional[dict] = None,
|
||||
pipeline_kwargs: Optional[dict] = None,
|
||||
batch_size: int = DEFAULT_BATCH_SIZE,
|
||||
**kwargs: Any,
|
||||
) -> HuggingFacePipeline:
|
||||
"""Construct the pipeline object from model_id and task."""
|
||||
try:
|
||||
from transformers import ( # type: ignore[import]
|
||||
AutoModelForCausalLM,
|
||||
AutoModelForSeq2SeqLM,
|
||||
AutoTokenizer,
|
||||
)
|
||||
from transformers import pipeline as hf_pipeline # type: ignore[import]
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import transformers python package. "
|
||||
"Please install it with `pip install transformers`."
|
||||
)
|
||||
|
||||
_model_kwargs = model_kwargs or {}
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_id, **_model_kwargs)
|
||||
|
||||
try:
|
||||
if task == "text-generation":
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import ( # type: ignore[import]
|
||||
OVModelForCausalLM,
|
||||
)
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForCausalLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
elif task in ("text2text-generation", "summarization", "translation"):
|
||||
if backend == "openvino":
|
||||
try:
|
||||
from optimum.intel.openvino import OVModelForSeq2SeqLM
|
||||
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import optimum-intel python package. "
|
||||
"Please install it with: "
|
||||
"pip install 'optimum[openvino,nncf]' "
|
||||
)
|
||||
try:
|
||||
# use local model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
|
||||
except Exception:
|
||||
# use remote model
|
||||
model = OVModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, export=True, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
model = AutoModelForSeq2SeqLM.from_pretrained(
|
||||
model_id, **_model_kwargs
|
||||
)
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
except ImportError as e:
|
||||
raise ValueError(
|
||||
f"Could not load the {task} model due to missing dependencies."
|
||||
) from e
|
||||
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token_id = model.config.eos_token_id
|
||||
|
||||
if (
|
||||
(
|
||||
getattr(model, "is_loaded_in_4bit", False)
|
||||
or getattr(model, "is_loaded_in_8bit", False)
|
||||
)
|
||||
and device is not None
|
||||
and backend == "default"
|
||||
):
|
||||
logger.warning(
|
||||
f"Setting the `device` argument to None from {device} to avoid "
|
||||
"the error caused by attempting to move the model that was already "
|
||||
"loaded on the GPU using the Accelerate module to the same or "
|
||||
"another device."
|
||||
)
|
||||
device = None
|
||||
|
||||
if (
|
||||
device is not None
|
||||
and importlib.util.find_spec("torch") is not None
|
||||
and backend == "default"
|
||||
):
|
||||
import torch
|
||||
|
||||
cuda_device_count = torch.cuda.device_count()
|
||||
if device < -1 or (device >= cuda_device_count):
|
||||
raise ValueError(
|
||||
f"Got device=={device}, "
|
||||
f"device is required to be within [-1, {cuda_device_count})"
|
||||
)
|
||||
if device_map is not None and device < 0:
|
||||
device = None
|
||||
if device is not None and device < 0 and cuda_device_count > 0:
|
||||
logger.warning(
|
||||
"Device has %d GPUs available. "
|
||||
"Provide device={deviceId} to `from_model_id` to use available"
|
||||
"GPUs for execution. deviceId is -1 (default) for CPU and "
|
||||
"can be a positive integer associated with CUDA device id.",
|
||||
cuda_device_count,
|
||||
)
|
||||
if device is not None and device_map is not None and backend == "openvino":
|
||||
logger.warning("Please set device for OpenVINO through: " "'model_kwargs'")
|
||||
if "trust_remote_code" in _model_kwargs:
|
||||
_model_kwargs = {
|
||||
k: v for k, v in _model_kwargs.items() if k != "trust_remote_code"
|
||||
}
|
||||
_pipeline_kwargs = pipeline_kwargs or {}
|
||||
pipeline = hf_pipeline(
|
||||
task=task,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
device_map=device_map,
|
||||
batch_size=batch_size,
|
||||
model_kwargs=_model_kwargs,
|
||||
**_pipeline_kwargs,
|
||||
)
|
||||
if pipeline.task not in VALID_TASKS:
|
||||
raise ValueError(
|
||||
f"Got invalid task {pipeline.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
return cls(
|
||||
pipeline=pipeline,
|
||||
model_id=model_id,
|
||||
model_kwargs=_model_kwargs,
|
||||
pipeline_kwargs=_pipeline_kwargs,
|
||||
batch_size=batch_size,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def _identifying_params(self) -> Mapping[str, Any]:
|
||||
"""Get the identifying parameters."""
|
||||
return {
|
||||
"model_id": self.model_id,
|
||||
"model_kwargs": self.model_kwargs,
|
||||
"pipeline_kwargs": self.pipeline_kwargs,
|
||||
}
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "huggingface_pipeline"
|
||||
|
||||
def _generate(
|
||||
self,
|
||||
prompts: List[str],
|
||||
stop: Optional[List[str]] = None,
|
||||
run_manager: Optional[CallbackManagerForLLMRun] = None,
|
||||
**kwargs: Any,
|
||||
) -> LLMResult:
|
||||
# List to hold all results
|
||||
text_generations: List[str] = []
|
||||
pipeline_kwargs = kwargs.get("pipeline_kwargs", {})
|
||||
|
||||
for i in range(0, len(prompts), self.batch_size):
|
||||
batch_prompts = prompts[i : i + self.batch_size]
|
||||
|
||||
# Process batch of prompts
|
||||
responses = self.pipeline(
|
||||
batch_prompts,
|
||||
**pipeline_kwargs,
|
||||
)
|
||||
|
||||
# Process each response in the batch
|
||||
for j, response in enumerate(responses):
|
||||
if isinstance(response, list):
|
||||
# if model returns multiple generations, pick the top one
|
||||
response = response[0]
|
||||
|
||||
if self.pipeline.task == "text-generation":
|
||||
text = response["generated_text"]
|
||||
elif self.pipeline.task == "text2text-generation":
|
||||
text = response["generated_text"]
|
||||
elif self.pipeline.task == "summarization":
|
||||
text = response["summary_text"]
|
||||
elif self.pipeline.task in "translation":
|
||||
text = response["translation_text"]
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Got invalid task {self.pipeline.task}, "
|
||||
f"currently only {VALID_TASKS} are supported"
|
||||
)
|
||||
|
||||
# Append the processed text to results
|
||||
text_generations.append(text)
|
||||
|
||||
return LLMResult(
|
||||
generations=[[Generation(text=text)] for text in text_generations]
|
||||
)
|
Reference in New Issue
Block a user