mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-17 23:41:46 +00:00
huggingface: init package (#21097)
First Pr for the langchain_huggingface partner Package - Moved some of the hugging face related class from `community` to the new `partner package` Still needed : - Documentation - Tests - Support for the new apply_chat_template in `ChatHuggingFace` - Confirm choice of class to support for embeddings witht he sentence-transformer team. cc : @efriis --------- Co-authored-by: Cyril Kondratenko <kkn1993@gmail.com> Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
@@ -0,0 +1,7 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.mark.compile
|
||||
def test_placeholder() -> None:
|
||||
"""Used for compiling integration tests without running any real tests."""
|
||||
pass
|
242
libs/partners/huggingface/tests/unit_tests/test_chat_models.py
Normal file
242
libs/partners/huggingface/tests/unit_tests/test_chat_models.py
Normal file
@@ -0,0 +1,242 @@
|
||||
from typing import Any, Dict, List
|
||||
from unittest.mock import MagicMock, Mock, patch
|
||||
|
||||
import pytest
|
||||
from langchain_core.messages import (
|
||||
AIMessage,
|
||||
BaseMessage,
|
||||
ChatMessage,
|
||||
HumanMessage,
|
||||
SystemMessage,
|
||||
)
|
||||
from langchain_core.outputs import ChatResult
|
||||
from langchain_core.tools import BaseTool
|
||||
|
||||
from langchain_huggingface.chat_models import ( # type: ignore[import]
|
||||
TGI_MESSAGE,
|
||||
ChatHuggingFace,
|
||||
_convert_message_to_chat_message,
|
||||
_convert_TGI_message_to_LC_message,
|
||||
)
|
||||
from langchain_huggingface.llms.huggingface_endpoint import (
|
||||
HuggingFaceEndpoint,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("message", "expected"),
|
||||
[
|
||||
(
|
||||
SystemMessage(content="Hello"),
|
||||
dict(role="system", content="Hello"),
|
||||
),
|
||||
(
|
||||
HumanMessage(content="Hello"),
|
||||
dict(role="user", content="Hello"),
|
||||
),
|
||||
(
|
||||
AIMessage(content="Hello"),
|
||||
dict(role="assistant", content="Hello", tool_calls=None),
|
||||
),
|
||||
(
|
||||
ChatMessage(role="assistant", content="Hello"),
|
||||
dict(role="assistant", content="Hello"),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_convert_message_to_chat_message(
|
||||
message: BaseMessage, expected: Dict[str, str]
|
||||
) -> None:
|
||||
result = _convert_message_to_chat_message(message)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("tgi_message", "expected"),
|
||||
[
|
||||
(
|
||||
TGI_MESSAGE(role="assistant", content="Hello", tool_calls=[]),
|
||||
AIMessage(content="Hello"),
|
||||
),
|
||||
(
|
||||
TGI_MESSAGE(role="assistant", content="", tool_calls=[]),
|
||||
AIMessage(content=""),
|
||||
),
|
||||
(
|
||||
TGI_MESSAGE(
|
||||
role="assistant",
|
||||
content="",
|
||||
tool_calls=[{"function": {"arguments": "'function string'"}}],
|
||||
),
|
||||
AIMessage(
|
||||
content="",
|
||||
additional_kwargs={
|
||||
"tool_calls": [{"function": {"arguments": '"function string"'}}]
|
||||
},
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_convert_TGI_message_to_LC_message(
|
||||
tgi_message: TGI_MESSAGE, expected: BaseMessage
|
||||
) -> None:
|
||||
result = _convert_TGI_message_to_LC_message(tgi_message)
|
||||
assert result == expected
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def mock_llm() -> Mock:
|
||||
llm = Mock(spec=HuggingFaceEndpoint)
|
||||
llm.inference_server_url = "test endpoint url"
|
||||
return llm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@patch(
|
||||
"langchain_huggingface.chat_models.huggingface.ChatHuggingFace._resolve_model_id"
|
||||
)
|
||||
def chat_hugging_face(mock_resolve_id: Any, mock_llm: Any) -> ChatHuggingFace:
|
||||
chat_hf = ChatHuggingFace(llm=mock_llm, tokenizer=MagicMock())
|
||||
return chat_hf
|
||||
|
||||
|
||||
def test_create_chat_result(chat_hugging_face: Any) -> None:
|
||||
mock_response = MagicMock()
|
||||
mock_response.choices = [
|
||||
MagicMock(
|
||||
message=TGI_MESSAGE(
|
||||
role="assistant", content="test message", tool_calls=[]
|
||||
),
|
||||
finish_reason="test finish reason",
|
||||
)
|
||||
]
|
||||
mock_response.usage = {"tokens": 420}
|
||||
|
||||
result = chat_hugging_face._create_chat_result(mock_response)
|
||||
assert isinstance(result, ChatResult)
|
||||
assert result.generations[0].message.content == "test message"
|
||||
assert (
|
||||
result.generations[0].generation_info["finish_reason"] == "test finish reason" # type: ignore[index]
|
||||
)
|
||||
assert result.llm_output["token_usage"]["tokens"] == 420 # type: ignore[index]
|
||||
assert result.llm_output["model"] == chat_hugging_face.llm.inference_server_url # type: ignore[index]
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"messages, expected_error",
|
||||
[
|
||||
([], "At least one HumanMessage must be provided!"),
|
||||
(
|
||||
[HumanMessage(content="Hi"), AIMessage(content="Hello")],
|
||||
"Last message must be a HumanMessage!",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_to_chat_prompt_errors(
|
||||
chat_hugging_face: Any, messages: List[BaseMessage], expected_error: str
|
||||
) -> None:
|
||||
with pytest.raises(ValueError) as e:
|
||||
chat_hugging_face._to_chat_prompt(messages)
|
||||
assert expected_error in str(e.value)
|
||||
|
||||
|
||||
def test_to_chat_prompt_valid_messages(chat_hugging_face: Any) -> None:
|
||||
messages = [AIMessage(content="Hello"), HumanMessage(content="How are you?")]
|
||||
expected_prompt = "Generated chat prompt"
|
||||
|
||||
chat_hugging_face.tokenizer.apply_chat_template.return_value = expected_prompt
|
||||
|
||||
result = chat_hugging_face._to_chat_prompt(messages)
|
||||
|
||||
assert result == expected_prompt
|
||||
chat_hugging_face.tokenizer.apply_chat_template.assert_called_once_with(
|
||||
[
|
||||
{"role": "assistant", "content": "Hello"},
|
||||
{"role": "user", "content": "How are you?"},
|
||||
],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
("message", "expected"),
|
||||
[
|
||||
(
|
||||
SystemMessage(content="You are a helpful assistant."),
|
||||
{"role": "system", "content": "You are a helpful assistant."},
|
||||
),
|
||||
(
|
||||
AIMessage(content="How can I help you?"),
|
||||
{"role": "assistant", "content": "How can I help you?"},
|
||||
),
|
||||
(
|
||||
HumanMessage(content="Hello"),
|
||||
{"role": "user", "content": "Hello"},
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_to_chatml_format(
|
||||
chat_hugging_face: Any, message: BaseMessage, expected: Dict[str, str]
|
||||
) -> None:
|
||||
result = chat_hugging_face._to_chatml_format(message)
|
||||
assert result == expected
|
||||
|
||||
|
||||
def test_to_chatml_format_with_invalid_type(chat_hugging_face: Any) -> None:
|
||||
message = "Invalid message type"
|
||||
with pytest.raises(ValueError) as e:
|
||||
chat_hugging_face._to_chatml_format(message)
|
||||
assert "Unknown message type:" in str(e.value)
|
||||
|
||||
|
||||
def tool_mock() -> Dict:
|
||||
return {"function": {"name": "test_tool"}}
|
||||
|
||||
|
||||
@pytest.mark.parametrize(
|
||||
"tools, tool_choice, expected_exception, expected_message",
|
||||
[
|
||||
([tool_mock()], ["invalid type"], ValueError, "Unrecognized tool_choice type."),
|
||||
(
|
||||
[tool_mock(), tool_mock()],
|
||||
"test_tool",
|
||||
ValueError,
|
||||
"must provide exactly one tool.",
|
||||
),
|
||||
(
|
||||
[tool_mock()],
|
||||
{"type": "function", "function": {"name": "other_tool"}},
|
||||
ValueError,
|
||||
"Tool choice {'type': 'function', 'function': {'name': 'other_tool'}} "
|
||||
"was specified, but the only provided tool was test_tool.",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_bind_tools_errors(
|
||||
chat_hugging_face: Any,
|
||||
tools: Dict[str, str],
|
||||
tool_choice: Any,
|
||||
expected_exception: Any,
|
||||
expected_message: str,
|
||||
) -> None:
|
||||
with patch(
|
||||
"langchain_huggingface.chat_models.huggingface.convert_to_openai_tool",
|
||||
side_effect=lambda x: x,
|
||||
):
|
||||
with pytest.raises(expected_exception) as excinfo:
|
||||
chat_hugging_face.bind_tools(tools, tool_choice=tool_choice)
|
||||
assert expected_message in str(excinfo.value)
|
||||
|
||||
|
||||
def test_bind_tools(chat_hugging_face: Any) -> None:
|
||||
tools = [MagicMock(spec=BaseTool)]
|
||||
with patch(
|
||||
"langchain_huggingface.chat_models.huggingface.convert_to_openai_tool",
|
||||
side_effect=lambda x: x,
|
||||
), patch("langchain_core.runnables.base.Runnable.bind") as mock_super_bind:
|
||||
chat_hugging_face.bind_tools(tools, tool_choice="auto")
|
||||
mock_super_bind.assert_called_once()
|
||||
_, kwargs = mock_super_bind.call_args
|
||||
assert kwargs["tools"] == tools
|
||||
assert kwargs["tool_choice"] == "auto"
|
Reference in New Issue
Block a user