mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 13:33:37 +00:00
Template for Ollama + Multi-query retriever (#14092)
This commit is contained in:
@@ -0,0 +1,93 @@
|
||||
from typing import List
|
||||
|
||||
from langchain.chains import LLMChain
|
||||
from langchain.chat_models import ChatOllama, ChatOpenAI
|
||||
from langchain.document_loaders import WebBaseLoader
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
from langchain.output_parsers import PydanticOutputParser
|
||||
from langchain.prompts import ChatPromptTemplate, PromptTemplate
|
||||
from langchain.pydantic_v1 import BaseModel, Field
|
||||
from langchain.retrievers.multi_query import MultiQueryRetriever
|
||||
from langchain.schema.output_parser import StrOutputParser
|
||||
from langchain.schema.runnable import RunnableParallel, RunnablePassthrough
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
from langchain.vectorstores import Chroma
|
||||
|
||||
# Load
|
||||
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||||
data = loader.load()
|
||||
|
||||
# Split
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
# Add to vectorDB
|
||||
vectorstore = Chroma.from_documents(
|
||||
documents=all_splits,
|
||||
collection_name="rag-private",
|
||||
embedding=OpenAIEmbeddings(),
|
||||
)
|
||||
|
||||
|
||||
# Output parser will split the LLM result into a list of queries
|
||||
class LineList(BaseModel):
|
||||
# "lines" is the key (attribute name) of the parsed output
|
||||
lines: List[str] = Field(description="Lines of text")
|
||||
|
||||
|
||||
class LineListOutputParser(PydanticOutputParser):
|
||||
def __init__(self) -> None:
|
||||
super().__init__(pydantic_object=LineList)
|
||||
|
||||
def parse(self, text: str) -> LineList:
|
||||
lines = text.strip().split("\n")
|
||||
return LineList(lines=lines)
|
||||
|
||||
|
||||
output_parser = LineListOutputParser()
|
||||
|
||||
QUERY_PROMPT = PromptTemplate(
|
||||
input_variables=["question"],
|
||||
template="""You are an AI language model assistant. Your task is to generate five
|
||||
different versions of the given user question to retrieve relevant documents from
|
||||
a vector database. By generating multiple perspectives on the user question, your
|
||||
goal is to help the user overcome some of the limitations of the distance-based
|
||||
similarity search. Provide these alternative questions separated by newlines.
|
||||
Original question: {question}""",
|
||||
)
|
||||
|
||||
# Add the LLM downloaded from Ollama
|
||||
ollama_llm = "zephyr"
|
||||
llm = ChatOllama(model=ollama_llm)
|
||||
|
||||
# Chain
|
||||
llm_chain = LLMChain(llm=llm, prompt=QUERY_PROMPT, output_parser=output_parser)
|
||||
|
||||
# Run
|
||||
retriever = MultiQueryRetriever(
|
||||
retriever=vectorstore.as_retriever(), llm_chain=llm_chain, parser_key="lines"
|
||||
) # "lines" is the key (attribute name) of the parsed output
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# RAG
|
||||
model = ChatOpenAI()
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
# Add typing for input
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user