Harrison/redo docs (#130)

Co-authored-by: Eugene Yurtsev <eyurtsev@gmail.com>
This commit is contained in:
Harrison Chase
2022-11-13 20:13:23 -08:00
committed by GitHub
parent f23b3ceb49
commit b1b6b27c5f
35 changed files with 909 additions and 368 deletions

View File

@@ -0,0 +1,38 @@
# Using Chains
Calling an LLM is a great first step, but it's just the beginning.
Normally when you use an LLM in an application, you are not sending user input directly to the LLM.
Instead, you are probably taking user input and constructing a prompt, and then sending that to the LLM.
For example, in the previous example, the text we passed in was hardcoded to ask for a name for a company that made colorful socks.
In this imaginary service, what we would want to do is take only the user input describing what the company does, and then format the prompt with that information.
This is easy to do with LangChain!
First lets define the prompt:
```python
from langchain.prompts import Prompt
prompt = Prompt(
input_variables=["product"],
template="What is a good name for a company that makes {product}?",
)
```
We can now create a very simple chain that will take user input, format the prompt with it, and then send it to the LLM:
```python
from langchain.chains import LLMChain
chain = LLMChain(llm=llm, prompt=prompt)
```
Now we can run that can only specifying the product!
```python
chain.run("colorful socks")
```
There we go! There's the first chain.
That is it for the Getting Started example.
As a next step, we would suggest checking out the more complex chains in the [Demos section](/examples/demos.rst)

View File

@@ -0,0 +1,37 @@
# Setting up your environment
Using LangChain will usually require integrations with one or more model providers, data stores, apis, etc.
There are two components to setting this up, installing the correct python packages and setting the right environment variables.
## Python packages
The python package needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required python packages.
## Environment Variables
The environment variable needed varies based on the integration. See the list of integrations for details.
There should also be helpful error messages raised if you try to run an integration and are missing any required environment variables.
You can set the environment variable in a few ways.
If you are trying to set the environment variable `FOO` to value `bar`, here are the ways you could do so:
- From the command line:
```
export FOO=bar
```
- From the python notebook/script:
```python
import os
os.environ["FOO"] = "bar"
```
For the Getting Started example, we will be using OpenAI's APIs, so we will first need to install their SDK:
```
pip install openai
```
We will then need to set the environment variable. Let's do this from inside the Jupyter notebook (or Python script).
```python
import os
os.environ["OPENAI_API_KEY"] = "..."
```

View File

@@ -0,0 +1,11 @@
# Installation
LangChain is available on PyPi, so to it is easily installable with:
```
pip install langchain
```
For more involved installation options, see the [Installation Reference](/installation.md) section.
That's it! LangChain is now installed. You can now use LangChain from a python script or Jupyter notebook.

View File

@@ -0,0 +1,25 @@
# Calling a LLM
The most basic building block of LangChain is calling an LLM on some input.
Let's walk through a simple example of how to do this.
For this purpose, let's pretend we are building a service that generates a company name based on what the company makes.
In order to do this, we first need to import the LLM wrapper.
```python
from langchain.llms import OpenAI
```
We can then initialize the wrapper with any arguments.
In this example, we probably want the outputs to be MORE random, so we'll initialize it with a HIGH temperature.
```python
llm = OpenAI(temperature=0.9)
```
We can now call it on some input!
```python
text = "What would be a good company name a company that makes colorful socks?"
llm(text)
```