mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 15:04:13 +00:00
docs ecosystem/integrations
update 4 (#5590)
# docs `ecosystem/integrations` update 4 Added missed integrations. Fixed inconsistencies. ## Who can review? @hwchase17 @dev2049
This commit is contained in:
@@ -1,20 +1,29 @@
|
||||
# Chroma
|
||||
|
||||
This page covers how to use the Chroma ecosystem within LangChain.
|
||||
It is broken into two parts: installation and setup, and then references to specific Chroma wrappers.
|
||||
>[Chroma](https://docs.trychroma.com/getting-started) is a database for building AI applications with embeddings.
|
||||
|
||||
## Installation and Setup
|
||||
- Install the Python package with `pip install chromadb`
|
||||
## Wrappers
|
||||
|
||||
### VectorStore
|
||||
```bash
|
||||
pip install chromadb
|
||||
```
|
||||
|
||||
|
||||
## VectorStore
|
||||
|
||||
There exists a wrapper around Chroma vector databases, allowing you to use it as a vectorstore,
|
||||
whether for semantic search or example selection.
|
||||
|
||||
To import this vectorstore:
|
||||
```python
|
||||
from langchain.vectorstores import Chroma
|
||||
```
|
||||
|
||||
For a more detailed walkthrough of the Chroma wrapper, see [this notebook](../modules/indexes/vectorstores/getting_started.ipynb)
|
||||
|
||||
## Retriever
|
||||
|
||||
See a [usage example](../modules/indexes/retrievers/examples/chroma_self_query.ipynb).
|
||||
|
||||
```python
|
||||
from langchain.retrievers import SelfQueryRetriever
|
||||
```
|
||||
|
Reference in New Issue
Block a user