mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-06 21:43:44 +00:00
docs ecosystem/integrations
update 4 (#5590)
# docs `ecosystem/integrations` update 4 Added missed integrations. Fixed inconsistencies. ## Who can review? @hwchase17 @dev2049
This commit is contained in:
@@ -1,25 +1,17 @@
|
||||
# Databerry
|
||||
|
||||
This page covers how to use the [Databerry](https://databerry.ai) within LangChain.
|
||||
>[Databerry](https://databerry.ai) is an [open source](https://github.com/gmpetrov/databerry) document retrieval platform that helps to connect your personal data with Large Language Models.
|
||||
|
||||
## What is Databerry?
|
||||
|
||||
Databerry is an [open source](https://github.com/gmpetrov/databerry) document retrievial platform that helps to connect your personal data with Large Language Models.
|
||||
## Installation and Setup
|
||||
|
||||

|
||||
We need to sign up for Databerry, create a datastore, add some data and get your datastore api endpoint url.
|
||||
We need the [API Key](https://docs.databerry.ai/api-reference/authentication).
|
||||
|
||||
## Quick start
|
||||
## Retriever
|
||||
|
||||
Retrieving documents stored in Databerry from LangChain is very easy!
|
||||
See a [usage example](../modules/indexes/retrievers/examples/databerry.ipynb).
|
||||
|
||||
```python
|
||||
from langchain.retrievers import DataberryRetriever
|
||||
|
||||
retriever = DataberryRetriever(
|
||||
datastore_url="https://api.databerry.ai/query/clg1xg2h80000l708dymr0fxc",
|
||||
# api_key="DATABERRY_API_KEY", # optional if datastore is public
|
||||
# top_k=10 # optional
|
||||
)
|
||||
|
||||
docs = retriever.get_relevant_documents("What's Databerry?")
|
||||
```
|
||||
|
Reference in New Issue
Block a user