diff --git a/libs/core/langchain_core/vectorstores/in_memory.py b/libs/core/langchain_core/vectorstores/in_memory.py index eb37c6398fd..4f23910160c 100644 --- a/libs/core/langchain_core/vectorstores/in_memory.py +++ b/libs/core/langchain_core/vectorstores/in_memory.py @@ -21,9 +21,7 @@ from langchain_core.embeddings import Embeddings from langchain_core.load import dumpd, load from langchain_core.vectorstores import VectorStore from langchain_core.vectorstores.utils import _cosine_similarity as cosine_similarity -from langchain_core.vectorstores.utils import ( - _maximal_marginal_relevance as maximal_marginal_relevance, -) +from langchain_core.vectorstores.utils import maximal_marginal_relevance if TYPE_CHECKING: from langchain_core.indexing import UpsertResponse diff --git a/libs/core/langchain_core/vectorstores/utils.py b/libs/core/langchain_core/vectorstores/utils.py index 5bcf756747b..6655ab415f9 100644 --- a/libs/core/langchain_core/vectorstores/utils.py +++ b/libs/core/langchain_core/vectorstores/utils.py @@ -71,7 +71,7 @@ def _cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray: return similarity -def _maximal_marginal_relevance( +def maximal_marginal_relevance( query_embedding: np.ndarray, embedding_list: list, lambda_mult: float = 0.5,