mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-26 05:48:40 +00:00
Add dashvector vectorstore (#9163)
## Description Add `Dashvector` vectorstore for langchain - [dashvector quick start](https://help.aliyun.com/document_detail/2510223.html) - [dashvector package description](https://pypi.org/project/dashvector/) ## How to use ```python from langchain.vectorstores.dashvector import DashVector dashvector = DashVector.from_documents(docs, embeddings) ``` --------- Co-authored-by: smallrain.xuxy <smallrain.xuxy@alibaba-inc.com> Co-authored-by: Bagatur <baskaryan@gmail.com>
This commit is contained in:
@@ -33,6 +33,7 @@ from langchain.vectorstores.cassandra import Cassandra
|
||||
from langchain.vectorstores.chroma import Chroma
|
||||
from langchain.vectorstores.clarifai import Clarifai
|
||||
from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings
|
||||
from langchain.vectorstores.dashvector import DashVector
|
||||
from langchain.vectorstores.deeplake import DeepLake
|
||||
from langchain.vectorstores.dingo import Dingo
|
||||
from langchain.vectorstores.docarray import DocArrayHnswSearch, DocArrayInMemorySearch
|
||||
@@ -83,6 +84,7 @@ __all__ = [
|
||||
"Chroma",
|
||||
"Clickhouse",
|
||||
"ClickhouseSettings",
|
||||
"DashVector",
|
||||
"DeepLake",
|
||||
"Dingo",
|
||||
"DocArrayHnswSearch",
|
||||
|
365
libs/langchain/langchain/vectorstores/dashvector.py
Normal file
365
libs/langchain/langchain/vectorstores/dashvector.py
Normal file
@@ -0,0 +1,365 @@
|
||||
"""Wrapper around DashVector vector database."""
|
||||
from __future__ import annotations
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import (
|
||||
Any,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from langchain.docstore.document import Document
|
||||
from langchain.embeddings.base import Embeddings
|
||||
from langchain.utils import get_from_env
|
||||
from langchain.vectorstores.base import VectorStore
|
||||
from langchain.vectorstores.utils import maximal_marginal_relevance
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class DashVector(VectorStore):
|
||||
"""Wrapper around DashVector vector database.
|
||||
|
||||
To use, you should have the ``dashvector`` python package installed.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.vectorstores import dashvector
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
import dashvector
|
||||
|
||||
client = dashvector.Client.init(api_key="***")
|
||||
client.create("langchain")
|
||||
collection = client.get("langchain")
|
||||
embeddings = OpenAIEmbeddings()
|
||||
vectorstore = Dashvector(collection, embeddings.embed_query, "text")
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
collection: Any,
|
||||
embedding: Embeddings,
|
||||
text_field: str,
|
||||
):
|
||||
"""Initialize with DashVector collection."""
|
||||
|
||||
try:
|
||||
import dashvector
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import dashvector python package. "
|
||||
"Please install it with `pip install dashvector`."
|
||||
)
|
||||
|
||||
if not isinstance(collection, dashvector.Collection):
|
||||
raise ValueError(
|
||||
f"collection should be an instance of dashvector.Collection, "
|
||||
f"bug got {type(collection)}"
|
||||
)
|
||||
|
||||
self._collection = collection
|
||||
self._embedding = embedding
|
||||
self._text_field = text_field
|
||||
|
||||
def _similarity_search_with_score_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[str] = None,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to query vector, along with scores"""
|
||||
|
||||
# query by vector
|
||||
ret = self._collection.query(embedding, topk=k, filter=filter)
|
||||
if not ret:
|
||||
raise ValueError(
|
||||
f"Fail to query docs by vector, error {self._collection.message}"
|
||||
)
|
||||
|
||||
docs = []
|
||||
for doc in ret:
|
||||
metadata = doc.fields
|
||||
text = metadata.pop(self._text_field)
|
||||
score = doc.score
|
||||
docs.append((Document(page_content=text, metadata=metadata), score))
|
||||
return docs
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
batch_size: int = 25,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
texts: Iterable of strings to add to the vectorstore.
|
||||
metadatas: Optional list of metadatas associated with the texts.
|
||||
ids: Optional list of ids associated with the texts.
|
||||
batch_size: Optional batch size to upsert docs.
|
||||
kwargs: vectorstore specific parameters
|
||||
|
||||
Returns:
|
||||
List of ids from adding the texts into the vectorstore.
|
||||
"""
|
||||
ids = ids or [str(uuid.uuid4().hex) for _ in texts]
|
||||
text_list = list(texts)
|
||||
for i in range(0, len(text_list), batch_size):
|
||||
# batch end
|
||||
end = min(i + batch_size, len(text_list))
|
||||
|
||||
batch_texts = text_list[i:end]
|
||||
batch_ids = ids[i:end]
|
||||
batch_embeddings = self._embedding.embed_documents(list(batch_texts))
|
||||
|
||||
# batch metadatas
|
||||
if metadatas:
|
||||
batch_metadatas = metadatas[i:end]
|
||||
else:
|
||||
batch_metadatas = [{} for _ in range(i, end)]
|
||||
for metadata, text in zip(batch_metadatas, batch_texts):
|
||||
metadata[self._text_field] = text
|
||||
|
||||
# batch upsert to collection
|
||||
docs = list(zip(batch_ids, batch_embeddings, batch_metadatas))
|
||||
ret = self._collection.upsert(docs)
|
||||
if not ret:
|
||||
raise ValueError(
|
||||
f"Fail to upsert docs to dashvector vector database,"
|
||||
f"Error: {ret.message}"
|
||||
)
|
||||
return ids
|
||||
|
||||
def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> bool:
|
||||
"""Delete by vector ID.
|
||||
|
||||
Args:
|
||||
ids: List of ids to delete.
|
||||
|
||||
Returns:
|
||||
True if deletion is successful,
|
||||
False otherwise.
|
||||
"""
|
||||
return bool(self._collection.delete(ids))
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to query.
|
||||
|
||||
Args:
|
||||
query: Text to search documents similar to.
|
||||
k: Number of documents to return. Default to 4.
|
||||
filter: Doc fields filter conditions that meet the SQL where clause
|
||||
specification.
|
||||
|
||||
Returns:
|
||||
List of Documents most similar to the query text.
|
||||
"""
|
||||
|
||||
docs_and_scores = self.similarity_search_with_relevance_scores(query, k, filter)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
def similarity_search_with_relevance_scores(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
filter: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Return docs most similar to query text , alone with relevance scores.
|
||||
|
||||
Less is more similar, more is more dissimilar.
|
||||
|
||||
Args:
|
||||
query: input text
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter: Doc fields filter conditions that meet the SQL where clause
|
||||
specification.
|
||||
|
||||
Returns:
|
||||
List of Tuples of (doc, similarity_score)
|
||||
"""
|
||||
|
||||
embedding = self._embedding.embed_query(query)
|
||||
return self._similarity_search_with_score_by_vector(
|
||||
embedding, k=k, filter=filter
|
||||
)
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
filter: Optional[str] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
filter: Doc fields filter conditions that meet the SQL where clause
|
||||
specification.
|
||||
|
||||
Returns:
|
||||
List of Documents most similar to the query vector.
|
||||
"""
|
||||
docs_and_scores = self._similarity_search_with_score_by_vector(
|
||||
embedding, k, filter
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||
among selected documents.
|
||||
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: Doc fields filter conditions that meet the SQL where clause
|
||||
specification.
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
embedding = self._embedding.embed_query(query)
|
||||
return self.max_marginal_relevance_search_by_vector(
|
||||
embedding, k, fetch_k, lambda_mult, filter
|
||||
)
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = 4,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||
among selected documents.
|
||||
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter: Doc fields filter conditions that meet the SQL where clause
|
||||
specification.
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
|
||||
# query by vector
|
||||
ret = self._collection.query(
|
||||
embedding, topk=fetch_k, filter=filter, include_vector=True
|
||||
)
|
||||
if not ret:
|
||||
raise ValueError(
|
||||
f"Fail to query docs by vector, error {self._collection.message}"
|
||||
)
|
||||
|
||||
candidate_embeddings = [doc.vector for doc in ret]
|
||||
mmr_selected = maximal_marginal_relevance(
|
||||
np.array(embedding), candidate_embeddings, lambda_mult, k
|
||||
)
|
||||
|
||||
metadatas = [ret.output[i].fields for i in mmr_selected]
|
||||
return [
|
||||
Document(page_content=metadata.pop(self._text_field), metadata=metadata)
|
||||
for metadata in metadatas
|
||||
]
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls,
|
||||
texts: List[str],
|
||||
embedding: Embeddings,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
dashvector_api_key: Optional[str] = None,
|
||||
collection_name: str = "langchain",
|
||||
text_field: str = "text",
|
||||
batch_size: int = 25,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> DashVector:
|
||||
"""Return DashVector VectorStore initialized from texts and embeddings.
|
||||
|
||||
This is the quick way to get started with dashvector vector store.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.vectorstores import DashVector
|
||||
from langchain.embeddings import OpenAIEmbeddings
|
||||
import dashvector
|
||||
|
||||
embeddings = OpenAIEmbeddings()
|
||||
dashvector = DashVector.from_documents(
|
||||
docs,
|
||||
embeddings,
|
||||
dashvector_api_key="{DASHVECTOR_API_KEY}"
|
||||
)
|
||||
"""
|
||||
try:
|
||||
import dashvector
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import dashvector python package. "
|
||||
"Please install it with `pip install dashvector`."
|
||||
)
|
||||
|
||||
dashvector_api_key = dashvector_api_key or get_from_env(
|
||||
"dashvector_api_key", "DASHVECTOR_API_KEY"
|
||||
)
|
||||
|
||||
dashvector_client = dashvector.Client(api_key=dashvector_api_key)
|
||||
dashvector_client.delete(collection_name)
|
||||
collection = dashvector_client.get(collection_name)
|
||||
if not collection:
|
||||
dim = len(embedding.embed_query(texts[0]))
|
||||
# create collection if not existed
|
||||
resp = dashvector_client.create(collection_name, dimension=dim)
|
||||
if resp:
|
||||
collection = dashvector_client.get(collection_name)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Fail to create collection. " f"Error: {resp.message}."
|
||||
)
|
||||
|
||||
dashvector_vector_db = cls(collection, embedding, text_field)
|
||||
dashvector_vector_db.add_texts(texts, metadatas, ids, batch_size)
|
||||
return dashvector_vector_db
|
@@ -0,0 +1,75 @@
|
||||
from time import sleep
|
||||
|
||||
from langchain.schema import Document
|
||||
from langchain.vectorstores import DashVector
|
||||
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
|
||||
|
||||
texts = ["foo", "bar", "baz"]
|
||||
ids = ["1", "2", "3"]
|
||||
|
||||
|
||||
def test_dashvector_from_texts() -> None:
|
||||
dashvector = DashVector.from_texts(
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
ids=ids,
|
||||
)
|
||||
|
||||
# the vector insert operation is async by design, we wait here a bit for the
|
||||
# insertion to complete.
|
||||
sleep(0.5)
|
||||
output = dashvector.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo")]
|
||||
|
||||
|
||||
def test_dashvector_with_text_with_metadatas() -> None:
|
||||
metadatas = [{"meta": i} for i in range(len(texts))]
|
||||
dashvector = DashVector.from_texts(
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
|
||||
# the vector insert operation is async by design, we wait here a bit for the
|
||||
# insertion to complete.
|
||||
sleep(0.5)
|
||||
output = dashvector.similarity_search("foo", k=1)
|
||||
assert output == [Document(page_content="foo", metadata={"meta": 0})]
|
||||
|
||||
|
||||
def test_dashvector_search_with_filter() -> None:
|
||||
metadatas = [{"meta": i} for i in range(len(texts))]
|
||||
dashvector = DashVector.from_texts(
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
)
|
||||
|
||||
# the vector insert operation is async by design, we wait here a bit for the
|
||||
# insertion to complete.
|
||||
sleep(0.5)
|
||||
output = dashvector.similarity_search("foo", filter="meta=2")
|
||||
assert output == [Document(page_content="baz", metadata={"meta": 2})]
|
||||
|
||||
|
||||
def test_dashvector_search_with_scores() -> None:
|
||||
dashvector = DashVector.from_texts(
|
||||
texts=texts,
|
||||
embedding=FakeEmbeddings(),
|
||||
ids=ids,
|
||||
)
|
||||
|
||||
# the vector insert operation is async by design, we wait here a bit for the
|
||||
# insertion to complete.
|
||||
sleep(0.5)
|
||||
output = dashvector.similarity_search_with_relevance_scores("foo")
|
||||
docs, scores = zip(*output)
|
||||
|
||||
assert scores[0] < scores[1] < scores[2]
|
||||
assert list(docs) == [
|
||||
Document(page_content="foo"),
|
||||
Document(page_content="bar"),
|
||||
Document(page_content="baz"),
|
||||
]
|
Reference in New Issue
Block a user