TEMPLATES: Add multi-index templates (#13490)

One that routes and one that fuses

---------

Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
Bagatur
2023-11-17 02:00:11 -08:00
committed by GitHub
parent 35e04f204b
commit b4312aac5c
16 changed files with 4230 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
from rag_multi_index_router.chain import chain
__all__ = ["chain"]

View File

@@ -0,0 +1,96 @@
from operator import itemgetter
from typing import Literal
from langchain.chat_models import ChatOpenAI
from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser
from langchain.prompts import ChatPromptTemplate
from langchain.pydantic_v1 import BaseModel, Field
from langchain.retrievers import (
ArxivRetriever,
KayAiRetriever,
PubMedRetriever,
WikipediaRetriever,
)
from langchain.schema import StrOutputParser
from langchain.schema.runnable import (
RouterRunnable,
RunnableParallel,
RunnablePassthrough,
)
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
pubmed = PubMedRetriever(top_k_results=5).with_config(run_name="pubmed")
arxiv = ArxivRetriever(top_k_results=5).with_config(run_name="arxiv")
sec = KayAiRetriever.create(
dataset_id="company", data_types=["10-K"], num_contexts=5
).with_config(run_name="sec_filings")
wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_config(
run_name="wiki"
)
llm = ChatOpenAI(model="gpt-3.5-turbo-1106")
class Search(BaseModel):
"""Search for relevant documents by question topic."""
question_resource: Literal[
"medical paper", "scientific paper", "public company finances report", "general"
] = Field(
...,
description=(
"The type of resource that would best help answer the user's question. "
"If none of the types are relevant return 'general'."
),
)
classifier = llm.bind(
functions=[convert_pydantic_to_openai_function(Search)],
function_call={"name": "Search"},
) | PydanticAttrOutputFunctionsParser(
pydantic_schema=Search, attr_name="question_resource"
)
retriever_map = {
"medical paper": pubmed,
"scientific paper": arxiv,
"public company finances report": sec,
"general": wiki,
}
router_retriever = RouterRunnable(runnables=retriever_map)
def format_docs(docs):
return "\n\n".join(f"Source {i}:\n{doc.page_content}" for i, doc in enumerate(docs))
system = """Answer the user question. Use the following sources to help \
answer the question. If you don't know the answer say "I'm not sure, I couldn't \
find information on {{topic}}."
Sources:
{sources}"""
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
class Question(BaseModel):
__root__: str
chain = (
(
RunnableParallel(
{"input": RunnablePassthrough(), "key": classifier}
).with_config(run_name="classify")
| RunnableParallel(
{"question": itemgetter("input"), "sources": router_retriever | format_docs}
).with_config(run_name="retrieve")
| prompt
| llm
| StrOutputParser()
)
.with_config(run_name="QA with router")
.with_types(input_type=Question)
)