mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-04 04:07:54 +00:00
TEMPLATES: Add multi-index templates (#13490)
One that routes and one that fuses --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
parent
35e04f204b
commit
b4312aac5c
1
templates/rag-multi-index-fusion/.gitignore
vendored
Normal file
1
templates/rag-multi-index-fusion/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
__pycache__
|
21
templates/rag-multi-index-fusion/LICENSE
Normal file
21
templates/rag-multi-index-fusion/LICENSE
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2023 LangChain, Inc.
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
73
templates/rag-multi-index-fusion/README.md
Normal file
73
templates/rag-multi-index-fusion/README.md
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
# RAG with Mulitple Indexes (Fusion)
|
||||||
|
|
||||||
|
A QA application that queries multiple domain-specific retrievers and selects the most relevant documents from across all retrieved results.
|
||||||
|
|
||||||
|
## Environment Setup
|
||||||
|
|
||||||
|
This application queries PubMed, ArXiv, Wikipedia, and [Kay AI](https://www.kay.ai) (for SEC filings).
|
||||||
|
|
||||||
|
You will need to create a free Kay AI account and [get your API key here](https://www.kay.ai).
|
||||||
|
Then set environment variable:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export KAY_API_KEY="<YOUR_API_KEY>"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use this package, you should first have the LangChain CLI installed:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install -U langchain-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
To create a new LangChain project and install this as the only package, you can do:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app new my-app --package rag-multi-index-fusion
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to add this to an existing project, you can just run:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app add rag-multi-index-fusion
|
||||||
|
```
|
||||||
|
|
||||||
|
And add the following code to your `server.py` file:
|
||||||
|
```python
|
||||||
|
from rag_multi_index_fusion import chain as rag_multi_index_fusion_chain
|
||||||
|
|
||||||
|
add_routes(app, rag_multi_index_fusion_chain, path="/rag-multi-index-fusion")
|
||||||
|
```
|
||||||
|
|
||||||
|
(Optional) Let's now configure LangSmith.
|
||||||
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||||
|
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||||
|
If you don't have access, you can skip this section
|
||||||
|
|
||||||
|
|
||||||
|
```shell
|
||||||
|
export LANGCHAIN_TRACING_V2=true
|
||||||
|
export LANGCHAIN_API_KEY=<your-api-key>
|
||||||
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain serve
|
||||||
|
```
|
||||||
|
|
||||||
|
This will start the FastAPI app with a server is running locally at
|
||||||
|
[http://localhost:8000](http://localhost:8000)
|
||||||
|
|
||||||
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||||
|
We can access the playground at [http://127.0.0.1:8000/rag-multi-index-fusion/playground](http://127.0.0.1:8000/rag-multi-index-fusion/playground)
|
||||||
|
|
||||||
|
We can access the template from code with:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langserve.client import RemoteRunnable
|
||||||
|
|
||||||
|
runnable = RemoteRunnable("http://localhost:8000/rag-multi-index-fusion")
|
||||||
|
```
|
1889
templates/rag-multi-index-fusion/poetry.lock
generated
Normal file
1889
templates/rag-multi-index-fusion/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
29
templates/rag-multi-index-fusion/pyproject.toml
Normal file
29
templates/rag-multi-index-fusion/pyproject.toml
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
[tool.poetry]
|
||||||
|
name = "rag-multi-index-fusion"
|
||||||
|
version = "0.0.1"
|
||||||
|
description = ""
|
||||||
|
authors = []
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
|
[tool.poetry.dependencies]
|
||||||
|
python = ">=3.8.1,<4.0"
|
||||||
|
langchain = ">=0.0.313, <0.1"
|
||||||
|
openai = "<2"
|
||||||
|
xmltodict = "^0.13.0"
|
||||||
|
kay = "^0.1.2"
|
||||||
|
wikipedia = "^1.4.0"
|
||||||
|
arxiv = "^2.0.0"
|
||||||
|
tiktoken = "^0.5.1"
|
||||||
|
|
||||||
|
[tool.poetry.group.dev.dependencies]
|
||||||
|
langchain-cli = ">=0.0.15"
|
||||||
|
fastapi = "^0.104.0"
|
||||||
|
sse-starlette = "^1.6.5"
|
||||||
|
|
||||||
|
[tool.langserve]
|
||||||
|
export_module = "rag_multi_index_fusion"
|
||||||
|
export_attr = "chain"
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = ["poetry-core"]
|
||||||
|
build-backend = "poetry.core.masonry.api"
|
@ -0,0 +1,3 @@
|
|||||||
|
from rag_multi_index_fusion.chain import chain
|
||||||
|
|
||||||
|
__all__ = ["chain"]
|
102
templates/rag-multi-index-fusion/rag_multi_index_fusion/chain.py
Normal file
102
templates/rag-multi-index-fusion/rag_multi_index_fusion/chain.py
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
import numpy as np
|
||||||
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.embeddings import OpenAIEmbeddings
|
||||||
|
from langchain.prompts import ChatPromptTemplate
|
||||||
|
from langchain.pydantic_v1 import BaseModel
|
||||||
|
from langchain.retrievers import (
|
||||||
|
ArxivRetriever,
|
||||||
|
KayAiRetriever,
|
||||||
|
PubMedRetriever,
|
||||||
|
WikipediaRetriever,
|
||||||
|
)
|
||||||
|
from langchain.schema import StrOutputParser
|
||||||
|
from langchain.schema.runnable import (
|
||||||
|
RunnableLambda,
|
||||||
|
RunnableParallel,
|
||||||
|
RunnablePassthrough,
|
||||||
|
)
|
||||||
|
from langchain.utils.math import cosine_similarity
|
||||||
|
|
||||||
|
pubmed = PubMedRetriever(top_k_results=5).with_config(run_name="pubmed")
|
||||||
|
arxiv = ArxivRetriever(top_k_results=5).with_config(run_name="arxiv")
|
||||||
|
sec = KayAiRetriever.create(
|
||||||
|
dataset_id="company", data_types=["10-K"], num_contexts=5
|
||||||
|
).with_config(run_name="sec_filings")
|
||||||
|
wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_config(
|
||||||
|
run_name="wiki"
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = OpenAIEmbeddings()
|
||||||
|
|
||||||
|
|
||||||
|
def fuse_retrieved_docs(input):
|
||||||
|
results_map = input["sources"]
|
||||||
|
query = input["question"]
|
||||||
|
embedded_query = embeddings.embed_query(query)
|
||||||
|
names, docs = zip(
|
||||||
|
*((name, doc) for name, docs in results_map.items() for doc in docs)
|
||||||
|
)
|
||||||
|
embedded_docs = embeddings.embed_documents([doc.page_content for doc in docs])
|
||||||
|
similarity = cosine_similarity(
|
||||||
|
[embedded_query],
|
||||||
|
embedded_docs,
|
||||||
|
)
|
||||||
|
most_similar = np.flip(np.argsort(similarity[0]))[:5]
|
||||||
|
return [
|
||||||
|
(
|
||||||
|
names[i],
|
||||||
|
docs[i],
|
||||||
|
)
|
||||||
|
for i in most_similar
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
retriever_map = {
|
||||||
|
"medical paper": pubmed,
|
||||||
|
"scientific paper": arxiv,
|
||||||
|
"public company finances report": sec,
|
||||||
|
"general": wiki,
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def format_named_docs(named_docs):
|
||||||
|
return "\n\n".join(
|
||||||
|
f"Source: {source}\n\n{doc.page_content}" for source, doc in named_docs
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
system = """Answer the user question. Use the following sources to help \
|
||||||
|
answer the question. If you don't know the answer say "I'm not sure, I couldn't \
|
||||||
|
find information on {{topic}}."
|
||||||
|
|
||||||
|
Sources:
|
||||||
|
|
||||||
|
{sources}"""
|
||||||
|
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
|
||||||
|
|
||||||
|
retrieve_all = RunnableParallel(
|
||||||
|
{"ArXiv": arxiv, "Wikipedia": wiki, "PubMed": pubmed, "SEC 10-K Forms": sec}
|
||||||
|
).with_config(run_name="retrieve_all")
|
||||||
|
|
||||||
|
|
||||||
|
class Question(BaseModel):
|
||||||
|
__root__: str
|
||||||
|
|
||||||
|
|
||||||
|
chain = (
|
||||||
|
(
|
||||||
|
RunnableParallel(
|
||||||
|
{"question": RunnablePassthrough(), "sources": retrieve_all}
|
||||||
|
).with_config(run_name="add_sources")
|
||||||
|
| RunnablePassthrough.assign(
|
||||||
|
sources=(
|
||||||
|
RunnableLambda(fuse_retrieved_docs) | format_named_docs
|
||||||
|
).with_config(run_name="fuse_and_format")
|
||||||
|
).with_config(run_name="update_sources")
|
||||||
|
| prompt
|
||||||
|
| ChatOpenAI(model="gpt-3.5-turbo-1106")
|
||||||
|
| StrOutputParser()
|
||||||
|
)
|
||||||
|
.with_config(run_name="QA with fused results")
|
||||||
|
.with_types(input_type=Question)
|
||||||
|
)
|
0
templates/rag-multi-index-fusion/tests/__init__.py
Normal file
0
templates/rag-multi-index-fusion/tests/__init__.py
Normal file
1
templates/rag-multi-index-router/.gitignore
vendored
Normal file
1
templates/rag-multi-index-router/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
__pycache__
|
21
templates/rag-multi-index-router/LICENSE
Normal file
21
templates/rag-multi-index-router/LICENSE
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2023 LangChain, Inc.
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
73
templates/rag-multi-index-router/README.md
Normal file
73
templates/rag-multi-index-router/README.md
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
# RAG with Multiple Indexes (Routing)
|
||||||
|
|
||||||
|
A QA application that routes between different domain-specific retrievers given a user question.
|
||||||
|
|
||||||
|
## Environment Setup
|
||||||
|
|
||||||
|
This application queries PubMed, ArXiv, Wikipedia, and [Kay AI](https://www.kay.ai) (for SEC filings).
|
||||||
|
|
||||||
|
You will need to create a free Kay AI account and [get your API key here](https://www.kay.ai).
|
||||||
|
Then set environment variable:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
export KAY_API_KEY="<YOUR_API_KEY>"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
To use this package, you should first have the LangChain CLI installed:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
pip install -U langchain-cli
|
||||||
|
```
|
||||||
|
|
||||||
|
To create a new LangChain project and install this as the only package, you can do:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app new my-app --package rag-multi-index-router
|
||||||
|
```
|
||||||
|
|
||||||
|
If you want to add this to an existing project, you can just run:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain app add rag-multi-index-router
|
||||||
|
```
|
||||||
|
|
||||||
|
And add the following code to your `server.py` file:
|
||||||
|
```python
|
||||||
|
from rag_multi_index_router import chain as rag_multi_index_router_chain
|
||||||
|
|
||||||
|
add_routes(app, rag_multi_index_router_chain, path="/rag-multi-index-router")
|
||||||
|
```
|
||||||
|
|
||||||
|
(Optional) Let's now configure LangSmith.
|
||||||
|
LangSmith will help us trace, monitor and debug LangChain applications.
|
||||||
|
LangSmith is currently in private beta, you can sign up [here](https://smith.langchain.com/).
|
||||||
|
If you don't have access, you can skip this section
|
||||||
|
|
||||||
|
|
||||||
|
```shell
|
||||||
|
export LANGCHAIN_TRACING_V2=true
|
||||||
|
export LANGCHAIN_API_KEY=<your-api-key>
|
||||||
|
export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to "default"
|
||||||
|
```
|
||||||
|
|
||||||
|
If you are inside this directory, then you can spin up a LangServe instance directly by:
|
||||||
|
|
||||||
|
```shell
|
||||||
|
langchain serve
|
||||||
|
```
|
||||||
|
|
||||||
|
This will start the FastAPI app with a server is running locally at
|
||||||
|
[http://localhost:8000](http://localhost:8000)
|
||||||
|
|
||||||
|
We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
|
||||||
|
We can access the playground at [http://127.0.0.1:8000/rag-multi-index-router/playground](http://127.0.0.1:8000/rag-multi-index-router/playground)
|
||||||
|
|
||||||
|
We can access the template from code with:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from langserve.client import RemoteRunnable
|
||||||
|
|
||||||
|
runnable = RemoteRunnable("http://localhost:8000/rag-multi-index-router")
|
||||||
|
```
|
1889
templates/rag-multi-index-router/poetry.lock
generated
Normal file
1889
templates/rag-multi-index-router/poetry.lock
generated
Normal file
File diff suppressed because it is too large
Load Diff
29
templates/rag-multi-index-router/pyproject.toml
Normal file
29
templates/rag-multi-index-router/pyproject.toml
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
[tool.poetry]
|
||||||
|
name = "rag-multi-index-router"
|
||||||
|
version = "0.0.1"
|
||||||
|
description = ""
|
||||||
|
authors = []
|
||||||
|
readme = "README.md"
|
||||||
|
|
||||||
|
[tool.poetry.dependencies]
|
||||||
|
python = ">=3.8.1,<4.0"
|
||||||
|
langchain = ">=0.0.313, <0.1"
|
||||||
|
openai = "<2"
|
||||||
|
xmltodict = "^0.13.0"
|
||||||
|
kay = "^0.1.2"
|
||||||
|
wikipedia = "^1.4.0"
|
||||||
|
arxiv = "^2.0.0"
|
||||||
|
tiktoken = "^0.5.1"
|
||||||
|
|
||||||
|
[tool.poetry.group.dev.dependencies]
|
||||||
|
langchain-cli = ">=0.0.15"
|
||||||
|
fastapi = "^0.104.0"
|
||||||
|
sse-starlette = "^1.6.5"
|
||||||
|
|
||||||
|
[tool.langserve]
|
||||||
|
export_module = "rag_multi_index_router"
|
||||||
|
export_attr = "chain"
|
||||||
|
|
||||||
|
[build-system]
|
||||||
|
requires = ["poetry-core"]
|
||||||
|
build-backend = "poetry.core.masonry.api"
|
@ -0,0 +1,3 @@
|
|||||||
|
from rag_multi_index_router.chain import chain
|
||||||
|
|
||||||
|
__all__ = ["chain"]
|
@ -0,0 +1,96 @@
|
|||||||
|
from operator import itemgetter
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from langchain.chat_models import ChatOpenAI
|
||||||
|
from langchain.output_parsers.openai_functions import PydanticAttrOutputFunctionsParser
|
||||||
|
from langchain.prompts import ChatPromptTemplate
|
||||||
|
from langchain.pydantic_v1 import BaseModel, Field
|
||||||
|
from langchain.retrievers import (
|
||||||
|
ArxivRetriever,
|
||||||
|
KayAiRetriever,
|
||||||
|
PubMedRetriever,
|
||||||
|
WikipediaRetriever,
|
||||||
|
)
|
||||||
|
from langchain.schema import StrOutputParser
|
||||||
|
from langchain.schema.runnable import (
|
||||||
|
RouterRunnable,
|
||||||
|
RunnableParallel,
|
||||||
|
RunnablePassthrough,
|
||||||
|
)
|
||||||
|
from langchain.utils.openai_functions import convert_pydantic_to_openai_function
|
||||||
|
|
||||||
|
pubmed = PubMedRetriever(top_k_results=5).with_config(run_name="pubmed")
|
||||||
|
arxiv = ArxivRetriever(top_k_results=5).with_config(run_name="arxiv")
|
||||||
|
sec = KayAiRetriever.create(
|
||||||
|
dataset_id="company", data_types=["10-K"], num_contexts=5
|
||||||
|
).with_config(run_name="sec_filings")
|
||||||
|
wiki = WikipediaRetriever(top_k_results=5, doc_content_chars_max=2000).with_config(
|
||||||
|
run_name="wiki"
|
||||||
|
)
|
||||||
|
|
||||||
|
llm = ChatOpenAI(model="gpt-3.5-turbo-1106")
|
||||||
|
|
||||||
|
|
||||||
|
class Search(BaseModel):
|
||||||
|
"""Search for relevant documents by question topic."""
|
||||||
|
|
||||||
|
question_resource: Literal[
|
||||||
|
"medical paper", "scientific paper", "public company finances report", "general"
|
||||||
|
] = Field(
|
||||||
|
...,
|
||||||
|
description=(
|
||||||
|
"The type of resource that would best help answer the user's question. "
|
||||||
|
"If none of the types are relevant return 'general'."
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
classifier = llm.bind(
|
||||||
|
functions=[convert_pydantic_to_openai_function(Search)],
|
||||||
|
function_call={"name": "Search"},
|
||||||
|
) | PydanticAttrOutputFunctionsParser(
|
||||||
|
pydantic_schema=Search, attr_name="question_resource"
|
||||||
|
)
|
||||||
|
|
||||||
|
retriever_map = {
|
||||||
|
"medical paper": pubmed,
|
||||||
|
"scientific paper": arxiv,
|
||||||
|
"public company finances report": sec,
|
||||||
|
"general": wiki,
|
||||||
|
}
|
||||||
|
router_retriever = RouterRunnable(runnables=retriever_map)
|
||||||
|
|
||||||
|
|
||||||
|
def format_docs(docs):
|
||||||
|
return "\n\n".join(f"Source {i}:\n{doc.page_content}" for i, doc in enumerate(docs))
|
||||||
|
|
||||||
|
|
||||||
|
system = """Answer the user question. Use the following sources to help \
|
||||||
|
answer the question. If you don't know the answer say "I'm not sure, I couldn't \
|
||||||
|
find information on {{topic}}."
|
||||||
|
|
||||||
|
Sources:
|
||||||
|
|
||||||
|
{sources}"""
|
||||||
|
prompt = ChatPromptTemplate.from_messages([("system", system), ("human", "{question}")])
|
||||||
|
|
||||||
|
|
||||||
|
class Question(BaseModel):
|
||||||
|
__root__: str
|
||||||
|
|
||||||
|
|
||||||
|
chain = (
|
||||||
|
(
|
||||||
|
RunnableParallel(
|
||||||
|
{"input": RunnablePassthrough(), "key": classifier}
|
||||||
|
).with_config(run_name="classify")
|
||||||
|
| RunnableParallel(
|
||||||
|
{"question": itemgetter("input"), "sources": router_retriever | format_docs}
|
||||||
|
).with_config(run_name="retrieve")
|
||||||
|
| prompt
|
||||||
|
| llm
|
||||||
|
| StrOutputParser()
|
||||||
|
)
|
||||||
|
.with_config(run_name="QA with router")
|
||||||
|
.with_types(input_type=Question)
|
||||||
|
)
|
0
templates/rag-multi-index-router/tests/__init__.py
Normal file
0
templates/rag-multi-index-router/tests/__init__.py
Normal file
Loading…
Reference in New Issue
Block a user