mirror of
https://github.com/hwchase17/langchain.git
synced 2025-07-10 15:06:18 +00:00
Anthropic system message fix (#11301)
Removes human prompt prefix before system message for anthropic models Bedrock anthropic api enforces that Human and Assistant messages must be interleaved (cannot have same type twice in a row). We currently treat System Messages as human messages when converting messages -> string prompt. Our validation when using Bedrock/BedrockChat raises an error when this happens. For ChatAnthropic we don't validate this so no error is raised, but perhaps the behavior is still suboptimal
This commit is contained in:
parent
34a64101cc
commit
b499de2926
@ -34,7 +34,7 @@ def _convert_one_message_to_text(
|
||||
elif isinstance(message, AIMessage):
|
||||
message_text = f"{ai_prompt} {message.content}"
|
||||
elif isinstance(message, SystemMessage):
|
||||
message_text = f"{human_prompt} <admin>{message.content}</admin>"
|
||||
message_text = message.content
|
||||
else:
|
||||
raise ValueError(f"Got unknown type {message}")
|
||||
return message_text
|
||||
@ -56,7 +56,6 @@ def convert_messages_to_prompt_anthropic(
|
||||
"""
|
||||
|
||||
messages = messages.copy() # don't mutate the original list
|
||||
|
||||
if not isinstance(messages[-1], AIMessage):
|
||||
messages.append(AIMessage(content=""))
|
||||
|
||||
|
@ -42,12 +42,12 @@ def _human_assistant_format(input_text: str) -> str:
|
||||
if count % 2 == 0:
|
||||
count += 1
|
||||
else:
|
||||
raise ValueError(ALTERNATION_ERROR)
|
||||
raise ValueError(ALTERNATION_ERROR + f" Received {input_text}")
|
||||
if input_text[i : i + len(ASSISTANT_PROMPT)] == ASSISTANT_PROMPT:
|
||||
if count % 2 == 1:
|
||||
count += 1
|
||||
else:
|
||||
raise ValueError(ALTERNATION_ERROR)
|
||||
raise ValueError(ALTERNATION_ERROR + f" Received {input_text}")
|
||||
|
||||
if count % 2 == 1: # Only saw Human, no Assistant
|
||||
input_text = input_text + ASSISTANT_PROMPT # SILENT CORRECTION
|
||||
|
@ -6,7 +6,7 @@ import pytest
|
||||
|
||||
from langchain.chat_models import ChatAnthropic
|
||||
from langchain.chat_models.anthropic import convert_messages_to_prompt_anthropic
|
||||
from langchain.schema import AIMessage, BaseMessage, HumanMessage
|
||||
from langchain.schema import AIMessage, BaseMessage, HumanMessage, SystemMessage
|
||||
|
||||
os.environ["ANTHROPIC_API_KEY"] = "foo"
|
||||
|
||||
@ -50,11 +50,24 @@ def test_anthropic_initialization() -> None:
|
||||
ChatAnthropic(model="test", anthropic_api_key="test")
|
||||
|
||||
|
||||
def test_formatting() -> None:
|
||||
messages: List[BaseMessage] = [HumanMessage(content="Hello")]
|
||||
@pytest.mark.parametrize(
|
||||
("messages", "expected"),
|
||||
[
|
||||
([HumanMessage(content="Hello")], "\n\nHuman: Hello\n\nAssistant:"),
|
||||
(
|
||||
[HumanMessage(content="Hello"), AIMessage(content="Answer:")],
|
||||
"\n\nHuman: Hello\n\nAssistant: Answer:",
|
||||
),
|
||||
(
|
||||
[
|
||||
SystemMessage(content="You're an assistant"),
|
||||
HumanMessage(content="Hello"),
|
||||
AIMessage(content="Answer:"),
|
||||
],
|
||||
"You're an assistant\n\nHuman: Hello\n\nAssistant: Answer:",
|
||||
),
|
||||
],
|
||||
)
|
||||
def test_formatting(messages: List[BaseMessage], expected: str) -> None:
|
||||
result = convert_messages_to_prompt_anthropic(messages)
|
||||
assert result == "\n\nHuman: Hello\n\nAssistant:"
|
||||
|
||||
messages = [HumanMessage(content="Hello"), AIMessage(content="Answer:")]
|
||||
result = convert_messages_to_prompt_anthropic(messages)
|
||||
assert result == "\n\nHuman: Hello\n\nAssistant: Answer:"
|
||||
assert result == expected
|
||||
|
Loading…
Reference in New Issue
Block a user