Change Chain Docs (#3537)

Co-authored-by: engkheng <60956360+outday29@users.noreply.github.com>
This commit is contained in:
Zander Chase 2023-04-25 10:51:09 -07:00 committed by GitHub
parent cf71b5d396
commit b49ee372f1
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -26,12 +26,13 @@
"\n",
"The `LLMChain` is a simple chain that takes in a prompt template, formats it with the user input and returns the response from an LLM.\n",
"\n",
"\n",
"To use the `LLMChain`, first create a prompt template."
]
},
{
"cell_type": "code",
"execution_count": 2,
"execution_count": 1,
"metadata": {
"tags": []
},
@ -56,7 +57,7 @@
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 2,
"metadata": {
"tags": []
},
@ -67,7 +68,7 @@
"text": [
"\n",
"\n",
"Cheerful Toes.\n"
"SockSplash!\n"
]
}
],
@ -88,7 +89,7 @@
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 3,
"metadata": {
"tags": []
},
@ -97,7 +98,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"Rainbow Footwear Co.\n"
"Rainbow Sox Co.\n"
]
}
],
@ -130,17 +131,17 @@
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'lame',\n",
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 6,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
@ -153,7 +154,7 @@
" prompt=PromptTemplate.from_template(prompt_template)\n",
")\n",
"\n",
"llm_chain(inputs={\"adjective\":\"lame\"})"
"llm_chain(inputs={\"adjective\":\"corny\"})"
]
},
{
@ -165,7 +166,7 @@
},
{
"cell_type": "code",
"execution_count": 7,
"execution_count": 5,
"metadata": {},
"outputs": [
{
@ -174,20 +175,69 @@
"{'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain(\"corny\", return_only_outputs=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"If the `Chain` only outputs one output key (i.e. only has one element in its `output_keys`), you can use `run` method. Note that `run` outputs a string instead of a dictionary."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['text']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# llm_chain only has one output key, so we can use run\n",
"llm_chain.output_keys"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'Why did the tomato turn red? Because it saw the salad dressing!'"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"llm_chain(\"lame\", return_only_outputs=True)"
"llm_chain.run({\"adjective\":\"corny\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If the `Chain` only takes one input key (i.e. only has one element in its `input_variables`), you can use `run` method. Note that `run` outputs a string instead of a dictionary."
"In the case of one input key, you can input the string directly without specifying the input mapping."
]
},
{
@ -198,7 +248,8 @@
{
"data": {
"text/plain": [
"'Why did the tomato turn red? Because it saw the salad dressing!'"
"{'adjective': 'corny',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 8,
@ -206,42 +257,14 @@
"output_type": "execute_result"
}
],
"source": [
"llm_chain.run({\"adjective\":\"lame\"})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Besides, in the case of one input key, you can input the string directly without specifying the input mapping."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'adjective': 'lame',\n",
" 'text': 'Why did the tomato turn red? Because it saw the salad dressing!'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# These two are equivalent\n",
"llm_chain.run({\"adjective\":\"lame\"})\n",
"llm_chain.run(\"lame\")\n",
"llm_chain.run({\"adjective\":\"corny\"})\n",
"llm_chain.run(\"corny\")\n",
"\n",
"# These two are also equivalent\n",
"llm_chain(\"lame\")\n",
"llm_chain({\"adjective\":\"lame\"})"
"llm_chain(\"corny\")\n",
"llm_chain({\"adjective\":\"corny\"})"
]
},
{
@ -262,7 +285,7 @@
},
{
"cell_type": "code",
"execution_count": 11,
"execution_count": 9,
"metadata": {},
"outputs": [
{
@ -271,7 +294,7 @@
"'The next four colors of a rainbow are green, blue, indigo, and violet.'"
]
},
"execution_count": 11,
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
@ -309,7 +332,7 @@
},
{
"cell_type": "code",
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"outputs": [
{
@ -336,7 +359,7 @@
"'ChatGPT is an AI language model developed by OpenAI. It is based on the GPT-3 architecture and is capable of generating human-like responses to text prompts. ChatGPT has been trained on a massive amount of text data and can understand and respond to a wide range of topics. It is often used for chatbots, virtual assistants, and other conversational AI applications.'"
]
},
"execution_count": 13,
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
@ -365,7 +388,7 @@
},
{
"cell_type": "code",
"execution_count": 14,
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@ -385,7 +408,7 @@
},
{
"cell_type": "code",
"execution_count": 15,
"execution_count": 12,
"metadata": {},
"outputs": [
{
@ -398,12 +421,12 @@
"\u001b[36;1m\u001b[1;3mRainbow Socks Co.\u001b[0m\n",
"\u001b[33;1m\u001b[1;3m\n",
"\n",
"\"Step into Color with Rainbow Socks Co!\"\u001b[0m\n",
"\"Step into Color with Rainbow Socks!\"\u001b[0m\n",
"\n",
"\u001b[1m> Finished chain.\u001b[0m\n",
"\n",
"\n",
"\"Step into Color with Rainbow Socks Co!\"\n"
"\"Step into Color with Rainbow Socks!\"\n"
]
}
],
@ -434,7 +457,7 @@
},
{
"cell_type": "code",
"execution_count": 16,
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@ -468,12 +491,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we can try running the chain that we called."
"Now, we can try running the chain that we called.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"execution_count": 14,
"metadata": {},
"outputs": [
{
@ -483,7 +507,7 @@
"Concatenated output:\n",
"\n",
"\n",
"Kaleidoscope Socks.\n",
"Socktastic Colors.\n",
"\n",
"\"Put Some Color in Your Step!\"\n"
]
@ -531,7 +555,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.10"
"version": "3.8.16"
},
"vscode": {
"interpreter": {