mirror of
https://github.com/hwchase17/langchain.git
synced 2025-09-16 06:53:16 +00:00
templates: Lanceb RAG template (#17809)
Thank you for contributing to LangChain! - [x] **PR title**: "package: description" - Where "package" is whichever of langchain, community, core, experimental, etc. is being modified. Use "docs: ..." for purely docs changes, "templates: ..." for template changes, "infra: ..." for CI changes. - Example: "community: add foobar LLM" - [x] **PR message**: ***Delete this entire checklist*** and replace with - **Description:** a description of the change - **Issue:** the issue # it fixes, if applicable - **Dependencies:** any dependencies required for this change - **Twitter handle:** if your PR gets announced, and you'd like a mention, we'll gladly shout you out! - [x] **Add tests and docs**: If you're adding a new integration, please include 1. a test for the integration, preferably unit tests that do not rely on network access, 2. an example notebook showing its use. It lives in `docs/docs/integrations` directory. - [x] **Lint and test**: Run `make format`, `make lint` and `make test` from the root of the package(s) you've modified. See contribution guidelines for more: https://python.langchain.com/docs/contributing/ Additional guidelines: - Make sure optional dependencies are imported within a function. - Please do not add dependencies to pyproject.toml files (even optional ones) unless they are required for unit tests. - Most PRs should not touch more than one package. - Changes should be backwards compatible. - If you are adding something to community, do not re-import it in langchain. If no one reviews your PR within a few days, please @-mention one of baskaryan, efriis, eyurtsev, hwchase17. --------- Co-authored-by: Erick Friis <erick@langchain.dev>
This commit is contained in:
60
templates/rag-lancedb/rag_lancedb/chain.py
Normal file
60
templates/rag-lancedb/rag_lancedb/chain.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from langchain_community.vectorstores import LanceDB
|
||||
from langchain_core.output_parsers import StrOutputParser
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.pydantic_v1 import BaseModel
|
||||
from langchain_core.runnables import RunnableParallel, RunnablePassthrough
|
||||
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
|
||||
|
||||
# Example for document loading (from url), splitting, and creating vectostore
|
||||
|
||||
"""
|
||||
# Load
|
||||
from langchain_community.document_loaders import WebBaseLoader
|
||||
loader = WebBaseLoader("https://lilianweng.github.io/posts/2023-06-23-agent/")
|
||||
data = loader.load()
|
||||
|
||||
# Split
|
||||
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
||||
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0)
|
||||
all_splits = text_splitter.split_documents(data)
|
||||
|
||||
# Add to vectorDB
|
||||
vectorstore = LanceDB.from_documents(documents=all_splits,
|
||||
collection_name="rag-chroma",
|
||||
embedding=OpenAIEmbeddings(),
|
||||
)
|
||||
retriever = vectorstore.as_retriever()
|
||||
"""
|
||||
|
||||
# Embed a single document for test
|
||||
vectorstore = LanceDB.from_texts(
|
||||
["harrison worked at kensho"], embedding=OpenAIEmbeddings()
|
||||
)
|
||||
|
||||
retriever = vectorstore.as_retriever()
|
||||
|
||||
# RAG prompt
|
||||
template = """Answer the question based only on the following context:
|
||||
{context}
|
||||
|
||||
Question: {question}
|
||||
"""
|
||||
prompt = ChatPromptTemplate.from_template(template)
|
||||
|
||||
# LLM
|
||||
model = ChatOpenAI()
|
||||
|
||||
# RAG chain
|
||||
chain = (
|
||||
RunnableParallel({"context": retriever, "question": RunnablePassthrough()})
|
||||
| prompt
|
||||
| model
|
||||
| StrOutputParser()
|
||||
)
|
||||
|
||||
|
||||
class Question(BaseModel):
|
||||
__root__: str
|
||||
|
||||
|
||||
chain = chain.with_types(input_type=Question)
|
Reference in New Issue
Block a user